

BLACK & VEATCH Corporation 6800 W. 115th St., Suite 2292 Overland Park, KS 66211

September 15, 2017

STRUCTURAL MODIFICATION REPORT

Washoe County Designation: Site Name: Slide Mountain

Site Information: Address: Atop Slide Mountain, off Rt. 431, Approx. 6 miles west

of New Washoe City, Washoe County, NV 89704

Description: 120' Self Support Tower

Applicable Codes: TIA-222-G

2012 IBC

2012 Northern Nevada Amendments

Black & Veatch is pleased to submit this Structural Analysis Report to determine the structural integrity of the aforementioned tower. The purpose of the analysis is to determine the suitability of the tower with the existing and proposed loading configuration detailed in the analysis report.

A <u>Structural Analysis with Mod Design</u> was performed. Based on the analysis, the tower <u>does comply</u> with TIA-222-G standards for antenna supporting structures. Therefore, the existing tower is deemed <u>sufficient</u> for the proposed loads.

We at Black & Veatch appreciate the opportunity to provide our professional services to Washoe County. If you have any questions or need further assistance please contact us.

Analysis Results

Tower Stress Level with Proposed Equipment: 92.8% Pass Foundation Ratio with Proposed Equipment: 76.0% Pass

*The results of this analysis are only valid if the county continues to monitor and inspect the leg thicknesses yearly. The leg thicknesses shall not be less than 1/16" less than the original design thickness.

Sincerely,

Black & Veatch Corporation

Analysis Prepared by: Hyun D. Kim

Analysis Reviewed by: Noel Z. Herrera, S.E.

SLIDE MOUNTAIN | WASHOE COUNTY STRUCTURAL MODIFICATION REPORT

TABLE OF CONTENTS

Table of Content	2
Tower Loading	
Material Strength	
Reference Documents	
Assumptions, Disclaimers, and Notes	
Recommendations/Comments	
Appendix A - TNX Tower Outout & Additional Calculations	

TOWER LOADING

Existing loading

Antenna		Мо	ount	Coax and Lines					
Carrier	Mount Height (ft)	RAD CL (ft)	Quantity	Model / Description	Quantity	Туре	Quantity	Size	
		126.0	1	12' Omni	1	Pipe Mount	Mount	- (0)	
	120.0	125.0	1	10' Omni	1	Pipe Mount	2 2	7/8" 1/2"	
		122.0	1	4' Omni	1	Pipe Mount	2	1/2	
	118.0	118.0	1	12"x6" TMA	-	-	-	-	
	112.0	112.0	1	Andrew 4' HP Dish	1	Pipe Mount	1	1-1/4"	
	100.0	104.0	2	8' Omni	3	Stand Off	3	1-5/8"	
	100.0	102.0	1	4' Omni	3			1-5/6	
	86.0	88.0	1	Ice Shield	1	Pipe Mount	1	1-1/4"	
		84.0	1	6' Dish w/Radome		Pipe Mount	1	1-1/4	
	76.5	79.0	1	Ice Shield	_ 1	1 Pipe Mount	1	E60	
XA7 1		74.0	1	RFS UXA8-59B			1	E00	
Washoe County	60.0	66.0	1	12' Omni	3	_			
dounty		64.0	1	8' Omni		Stand Off	3	7/8"	
		62.5	1	5' Omni					
	48.5	51.0	1	Ice Shield	1	Pipe Mount	1	E60	
		46.0	1	RFS UXA8-59B			1	E00	
	37.0	39.0	1	Ice Shield	1	1 Pipe Mount	1	E60	
	37.0	35.0	1	RFS PAD6-65	1		1	LOU	
	31.5	33.0	1	Ice Shield	1	Pipe Mount	1	1-1/4"	
	51.5	30.0	1	RFS 4' HP Dish	1 1	1 Tipe Mount	1	1 1/7	
		20.0	1	Ice Shield	1 Pipe M		1	1 //"	
	17.0	17.0	1	Yagi		Pipe Mount	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	1/4" 3/8"	
			1	2' Dish w/Radome			-, -		

MATERIAL STRENGTH

Capacity of the structural members is based on theoretical values obtained from the design structural and shown in the table below:

www.bv.com

Member Type	Yield Strength
Legs	35 ksi
Diagonals/Horizontals	36 ksi
Bolts	A325X
Anchor Bolts	36 ksi

SLIDE MOUNTAIN | WASHOE COUNTY STRUCTURAL MODIFICATION REPORT

REFERENCE DOCUMENTS

Existing and Current conditions of tower, foundation, and site loading information are based on the following table.

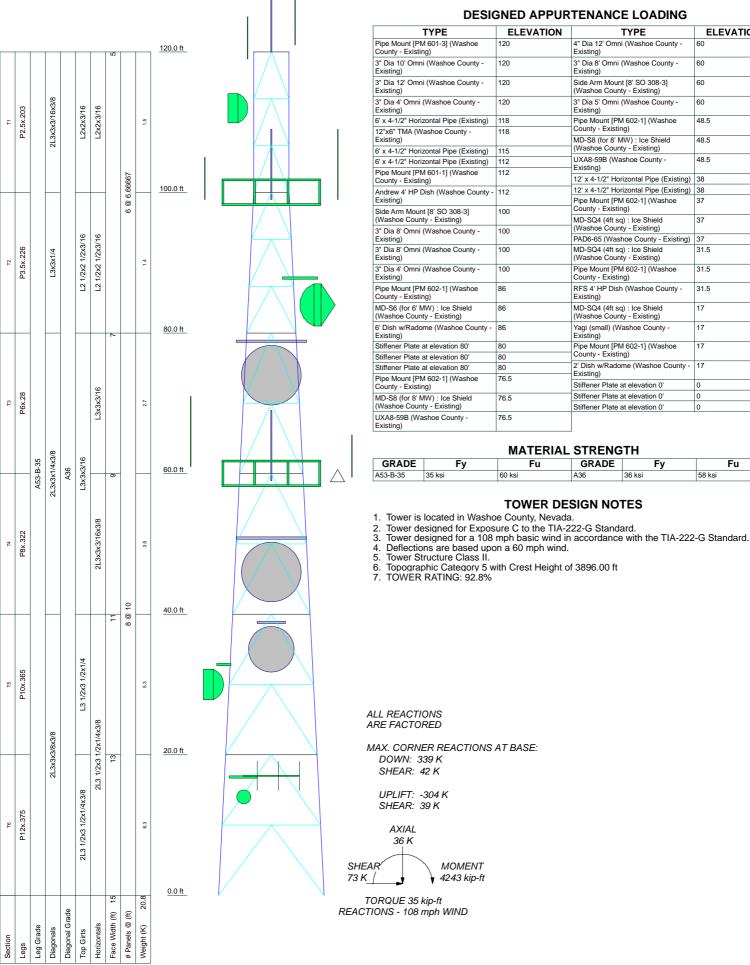
Document Title	Description		
Structural Analysis by Black & Veatch, dated 07/11/2017	Previous Structural Analysis and Loading Data		
Leg Scoping Report by Tower Engineering Professionals, Inc., dated 08/18/2017	Tower Leg Inspection Report		
Magnetic Particle Inspection of Existing Flange to Leg Welds Report by Tower Engineering Professionals, Inc., dated 08/16/2017	Non-Destructive Testing Inspection		
Tower Mapping Report by Black & Veatch, dated 06/30/2017	Loading Data		
Tower Drawing by Tower Structures, dated 05/18/2000	Tower Geometry Data		
Foundation Drawing by Tower Structures, dated 05/18/2000	Foundation and Geotechnical Data		

ASSUMPTIONS, DISCLAIMERS, AND NOTES

- 1. This analysis was performed under the assumption that all information provided to Black & Veatch is current and correct. This is to include site data, existing appurtenance loading, tower/foundation details, and geotechnical data. If this information is not current and correct, this report should be considered obsolete and further analysis will be required.
- 2. This analysis assumes that the tower structural components and mounts, including all steel sections and attachment hardware, are in good working order and in their original state, free of rust or other forms of corrosion. Furthermore, it is assumed that the tower and the tower foundation have been properly maintained and monitored since the time of construction. This report should be considered obsolete and further analysis will be required if the tower and/or foundation does not meet all of the above specifications.
- 3. This analysis assumes that all existing and/or proposed equipment's mounts on the tower will have adequate capacity to support the existing and proposed equipment loading.
- 4. The existing tower has been analyzed with applicable seismic loading taken into consideration. Seismic loading considerations are based on the codes criteria for this tower's jurisdiction.

Project #: 196481 Rev. 0 Page | 4 www.bv.com

SLIDE MOUNTAIN | WASHOE COUNTY STRUCTURAL MODIFICATION REPORT


RECOMMENDATIONS/COMMENTS

The tower and its foundation will have sufficient capacity to carry the proposed load after proper installation of the reinforcements shown in Appendix A.

Project #: 196481 Rev. 0 Page | 5 www.bv.com

APPENDIX A TNX TOWER OUTPUT & ADDITIONAL CALCULATIONS

DESIGNED APPURTENANCE LOADING

TYPE	ELEVATION	TYPE	ELEVATION
Pipe Mount [PM 601-3] (Washoe County - Existing)	120	4" Dia 12' Omni (Washoe County - Existing)	60
3" Dia 10' Omni (Washoe County - Existing)	120	3" Dia 8' Omni (Washoe County - Existing)	60
3" Dia 12' Omni (Washoe County - Existing)	120	Side Arm Mount [8' SO 308-3] (Washoe County - Existing)	60
3" Dia 4' Omni (Washoe County - Existing)	120	3" Dia 5' Omni (Washoe County - Existing)	60
6' x 4-1/2" Horizontal Pipe (Existing)	118	Pipe Mount [PM 602-1] (Washoe	48.5
12"x6" TMA (Washoe County - Existing)	118	County - Existing) MD-S8 (for 8' MW) : Ice Shield	48.5
6' x 4-1/2" Horizontal Pipe (Existing)	115	(Washoe County - Existing)	
6' x 4-1/2" Horizontal Pipe (Existing)	112	UXA8-59B (Washoe County - Existing)	48.5
Pipe Mount [PM 601-1] (Washoe County - Existing)	112	12' x 4-1/2" Horizontal Pipe (Existing)	38
Andrew 4' HP Dish (Washoe County -	112	12' x 4-1/2" Horizontal Pipe (Existing)	38
Existing)		Pipe Mount [PM 602-1] (Washoe County - Existing)	37
Side Arm Mount [8' SO 308-3] (Washoe County - Existing)	100	MD-SQ4 (4ft sq) : Ice Shield	37
3" Dia 8' Omni (Washoe County - Existing)	100	(Washoe County - Existing) PAD6-65 (Washoe County - Existing)	37
3" Dia 8' Omni (Washoe County - Existing)	100	MD-SQ4 (4ft sq) : Ice Shield (Washoe County - Existing)	31.5
3" Dia 4' Omni (Washoe County - Existing)	100	Pipe Mount [PM 602-1] (Washoe County - Existing)	31.5
Pipe Mount [PM 602-1] (Washoe County - Existing)	86	RFS 4' HP Dish (Washoe County - Existing)	31.5
MD-S6 (for 6' MW) : Ice Shield (Washoe County - Existing)	86	MD-SQ4 (4ft sq) : Ice Shield (Washoe County - Existing)	17
6' Dish w/Radome (Washoe County - Existing)	86	Yagi (small) (Washoe County - Existing)	17
Stiffener Plate at elevation 80'	80	Pipe Mount [PM 602-1] (Washoe	17
Stiffener Plate at elevation 80'	80	County - Existing)	
Stiffener Plate at elevation 80'	80	2' Dish w/Radome (Washoe County - Existing)	17
Pipe Mount [PM 602-1] (Washoe County - Existing)	76.5	Stiffener Plate at elevation 0'	0
MD-S8 (for 8' MW) : Ice Shield	76.5	Stiffener Plate at elevation 0'	0
(Washoe County - Existing)		Stiffener Plate at elevation 0'	0
UXA8-59B (Washoe County - Existing)	76.5		

MATERIAL STRENGTH

GRADE	Fy	Fu	GRADE	Fy	Fu
A53-B-35	35 ksi	60 ksi	A36	36 ksi	58 ksi

TOWER DESIGN NOTES

b: SLIDE MOUNTAIN						
roject: SLIDE MOUNTA						
lient: Washoe County	Drawn by: Hyun D. Kim	App'd:				
		Scale: NTS				
ath:	•	Dwg No. E-1				

4	7	
tnvi	<i>'ower</i>	Ì
uuai	UIVEI	

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	1 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Washoe County	Designed by Hyun D. Kim

Tower Input Data

The main tower is a 3x free standing tower with an overall height of 120.00 ft above the ground line.

The base of the tower is set at an elevation of 0.00 ft above the ground line.

The face width of the tower is 5.00 ft at the top and 15.00 ft at the base.

This tower is designed using the TIA-222-G standard.

The following design criteria apply:

Tower is located in Washoe County, Nevada.

Basic wind speed of 108 mph.

Structure Class II.

Exposure Category C.

Topographic Category 5.

Crest Height 3896.00 ft.

SEAW RSM-03 procedures for wind speed-up calculations are used.

Topographic Feature: Hill. Slope Distance L: 11932.80 ft. Distance from Crest x: 490.00 ft.

Deflections calculated using a wind speed of 60 mph.

Pressures are calculated at each section.

Stress ratio used in tower member design is 1.

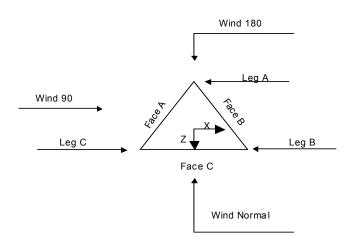
Local bending stresses due to climbing loads, feed line supports, and appurtenance mounts are not considered.

Options

Consider Moments - Legs Consider Moments - Horizontals Consider Moments - Diagonals Use Moment Magnification

- √ Use Code Stress Ratios
- √ Use Code Safety Factors Guys Escalate Ice
 Always Use Max Kz
 Use Special Wind Profile
- √ Include Bolts In Member Capacity Leg Bolts Are At Top Of Section
- √ Secondary Horizontal Braces Leg
 Use Diamond Inner Bracing (4 Sided)
 SR Members Have Cut Ends
 SR Members Are Concentric

Distribute Leg Loads As Uniform Assume Legs Pinned


- √ Assume Rigid Index Plate
- √ Use Clear Spans For Wind Area
- √ Use Clear Spans For KL/r
 Retension Guys To Initial Tension
- √ Bypass Mast Stability Checks
- √ Use Azimuth Dish Coefficients
- √ Project Wind Area of Appurt. Autocalc Torque Arm Areas Add IBC .6D+W Combination Sort Capacity Reports By Component Triangulate Diamond Inner Bracing Treat Feed Line Bundles As Cylinder
- Use ASCE 10 X-Brace Ly Rules
- √ Calculate Redundant Bracing Forces Ignore Redundant Members in FEA
- √ SR Leg Bolts Resist Compression
 All Leg Panels Have Same Allowable
 Offset Girt At Foundation
- √ Consider Feed Line Torque
- ✓ Include Angle Block Shear Check Use TIA-222-G Bracing Resist. Exemption Use TIA-222-G Tension Splice Exemption Poles

Include Shear-Torsion Interaction Always Use Sub-Critical Flow Use Top Mounted Sockets

4	·
THY	<i>Sower</i>

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	2 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Washoe County	Designed by Hyun D. Kim

Triangular Tower

Tower Section Geometry							
Torus	Torus	A a a a see la la s	Description	Caption	Marrakana	Castian	

Tower	Tower	Assembly	Description	Section	Number	Section
Section	Elevation	Database		Width	of	Length
					Sections	_
	ft			ft		ft
T1	120.00-100.00			5.00	1	20.00
T2	100.00-80.00			5.00	1	20.00
T3	80.00-60.00			7.00	1	20.00
T4	60.00-40.00			9.00	1	20.00
T5	40.00-20.00			11.00	1	20.00
T6	20.00-0.00			13.00	1	20.00

Tower Section Geometry (cont'd)

Tower	Tower	Diagonal	Bracing	Has	Has	Top Girt	Bottom Girt
Section	Elevation	Spacing	Туре	K Brace	Horizontals	Offset	Offset
				End			
	ft	ft		Panels		in	in
T1	120.00-100.00	6.67	K Brace Down	No	Yes	0.0000	0.0000
T2	100.00-80.00	6.67	K Brace Down	No	Yes	0.0000	0.0000
T3	80.00-60.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T4	60.00-40.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T5	40.00-20.00	10.00	K Brace Down	No	Yes	0.0000	0.0000
T6	20.00-0.00	10.00	K Brace Down	No	Yes	0.0000	0.0000

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	3 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

Tower Section Geometry (cont'd)

Tower	Leg	Leg	Leg	Diagonal	Diagonal	Diagonal
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T1 120.00-100.00	Pipe	P2.5x.203	A53-B-35	Double Angle	2L3x3x3/16x3/8	A36
			(35 ksi)			(36 ksi)
T2 100.00-80.00	Pipe	P3.5x.226	A53-B-35	Equal Angle	L3x3x1/4	A36
	•		(35 ksi)			(36 ksi)
T3 80.00-60.00	Pipe	P6x.28	A53-B-35	Double Equal	2L3x3x1/4x3/8	A36
	•		(35 ksi)	Angle		(36 ksi)
T4 60.00-40.00	Pipe	P8x.322	A53-B-35	Double Equal	2L3x3x1/4x3/8	A36
	•		(35 ksi)	Angle		(36 ksi)
T5 40.00-20.00	Pipe	P10x.365	A53-B-35	Double Equal	2L3x3x3/8x3/8	A36
	-		(35 ksi)	Angle		(36 ksi)
T6 20.00-0.00	Pipe	P12x.375	A53-B-35	Double Equal	2L3x3x3/8x3/8	A36
	-		(35 ksi)	Angle		(36 ksi)

Tower Section Geometry (cont'd)

Tower	Top Girt	Top Girt	Top Girt	Bottom Girt	Bottom Girt	Bottom Girt
Elevation	Туре	Size	Grade	Туре	Size	Grade
ft						
T1 120.00-100.00	Equal Angle	L2x2x3/16	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)
T2 100.00-80.00	Equal Angle	L2 1/2x2 1/2x3/16	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)
T3 80.00-60.00	Equal Angle	L3x3x3/16	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)
T4 60.00-40.00	Equal Angle	L3x3x3/16	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)
T5 40.00-20.00	Equal Angle	L3 1/2x3 1/2x1/4	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)
T6 20.00-0.00	Double Angle	2L3 1/2x3 1/2x1/4x3/8	A36	Equal Angle		A36
			(36 ksi)			(36 ksi)

Tower Section Geometry (cont'd)

Tower	No.	Mid Girt	Mid Girt	Mid Girt	Horizontal	Horizontal	Horizontal
Elevation	of	Туре	Size	Grade	Туре	Size	Grade
	Mid						
ft	Girts						
T1 120.00-100.00	None	Flat Bar		A36	Equal Angle	L2x2x3/16	A36
				(36 ksi)			(36 ksi)
T2 100.00-80.00	None	Flat Bar		A36	Equal Angle	L2 1/2x2 1/2x3/16	A36
				(36 ksi)			(36 ksi)
T3 80.00-60.00	None	Flat Bar		A36	Equal Angle	L3x3x3/16	A36
				(36 ksi)			(36 ksi)
T4 60.00-40.00	None	Flat Bar		A36	Double Angle	2L3x3x3/16x3/8	A36
				(36 ksi)			(36 ksi)
T5 40.00-20.00	None	Flat Bar		A36	Double Angle	2L3 1/2x3 1/2x1/4x3/8	A36
				(36 ksi)			(36 ksi)
T6 20.00-0.00	None	Flat Bar		A36	Double Angle	2L3 1/2x3 1/2x1/4x3/8	A36

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

T6 20.00-0.00

Job		Page
	SLIDE MOUNTAIN	4 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

1.05

35.0000

Mid-Pt

Mid-Pt

Tower Elevation	No. of Mid	Mid Girt Type	Mid Girt Size	Mid Girt Grade	Horizontal Type	Horizontal Size	Horizontal Grade
ft	Girts						
				(36 ksi)			(36 ksi)

	Tower Section Geometry (cont'd)												
Tower Elevation	Gusset Area (per face)	Gusset Thickness	Gusset Grade	Adjust. Factor A_f	Adjust. Factor A _r	Weight Mult.	Double Angle Stitch Bolt Spacing Diagonals	Double Angle Stitch Bolt Spacing Horizontals	Double Angle Stitch Bolt Spacing Redundants				
ft	ft^2	in					in	in	in				
T1 120.00-100.00	0.00	0.3750	A36 (36 ksi)	1.05	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt				
T2 100.00-80.00	0.00	0.3750	A36 (36 ksi)	1.05	1	1.05	Mid-Pt	Mid-Pt	Mid-Pt				
T3 80.00-60.00	0.00	0.3750	A36 (36 ksi)	1.05	1	1.05	31.0000	Mid-Pt	Mid-Pt				
T4 60.00-40.00	0.00	0.3750	A36 (36 ksi)	1.05	1	1.05	32.0000	Mid-Pt	Mid-Pt				
T5 40.00-20.00	0.00	0.3750	A36	1.05	1	1.05	33.5000	Mid-Pt	Mid-Pt				

Tower Section Geometry (cont'd) K Factors¹ Tower Calc Calc Legs X K Single Girts Horiz. Sec. Inner

						K Fa	ctors			
Tower Elevation	Calc K	Calc K	Legs	X Brace	K Brace	Single Diags	Girts	Horiz.	Sec. Horiz.	Inner Brace
	Single	Solid		Diags	Diags					
	Angles	Rounds		X^{-}	X^{-}	X	X	X	X	X
ft				Y	Y	Y	Y	Y	Y	Y
T1	Yes	Yes	1	1	1	1	1	1	1	1
120.00-100.00				1	1	1	1	1	1	1
T2	Yes	Yes	1	1	1	1	1	1	1	1
100.00-80.00				1	1	1	1	1	1	1
T3	Yes	Yes	1	1	1	1	1	1	1	1
80.00-60.00				1	1	1	1	1	1	1
T4	Yes	Yes	1	1	1	1	1	1	1	1
60.00-40.00				1	1	1	1	1	1	1
T5	Yes	Yes	1	1	1	1	1	1	1	1
40.00-20.00				1	1	1	1	1	1	1
T6 20.00-0.00	Yes	Yes	1	1	1	1	1	1	1	1
				1	1	1	1	1	1	1

1.05

(36 ksi)

A36

(36 ksi)

0.3750

Tower Section Geometry (cont'd)

Note: K factors are applied to member segment lengths. K-braces without inner supporting members will have the K factor in the out-of-plane direction applied to the overall length.

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	5 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Washoe County	Designed by Hyun D. Kim

Tower	Leg	g Diagonal		Top G	Top Girt		Bottom Girt		Mid Girt		rizontal	Short Horizontal		
Elevation														
ft														
	Net Width	U	Net Width	U	Net Width	U	Net	U	Net	U	Net	U	Net	U
	Deduct		Deduct		Deduct		Width		Width		Width		Width	
	in		in		in		Deduct		Deduct		Deduct		Deduct	
							in		in		in		in	
T1	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
120.00-100.00														
T2	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
100.00-80.00														
T3 80.00-60.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T4 60.00-40.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T5 40.00-20.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75
T6 20.00-0.00	0.0000	1	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75	0.0000	0.75

Tower Section Geometry (cont'd)

Tower	Leg	Leg		Diagon	ıal	Top G	irt	Bottom	Girt	Mid G	irt	Long Hori	zontal	Short Hori	zontal
Elevation	Connection														
ft	Туре														
		Bolt Size	No.	Bolt Size	No.	Bolt Size	No.	Bolt Size	No.						
		in		in		in		in		in		in		in	
T1	Flange	0.6250	4	0.6250	1	0.6250	1	0.6250	0	0.6250	0	0.6250	1	0.6250	0
120.00-100.00		A325X		A325X		A325X		A325X		A325N		A325X		A325N	
T2	Flange	0.6250	4	0.7500	1	0.7500	1	0.6250	0	0.6250	0	0.7500	1	0.6250	0
100.00-80.00		A325X		A325X		A325X		A325X		A325N		A325X		A325N	
T3 80.00-60.00	Flange	0.8750	4	0.8750	1	0.8750	1	0.6250	0	0.6250	0	0.8750	1	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325X		A325N	
T4 60.00-40.00	Flange	0.8750	6	0.8750	1	0.8750	1	0.6250	0	0.6250	0	0.8750	1	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325X		A325N	
T5 40.00-20.00	Flange	1.1250	6	0.8750	1	0.8750	1	0.6250	0	0.6250	0	0.8750	1	0.6250	0
		A325X		A325X		A325X		A325X		A325N		A325X		A325N	
T6 20.00-0.00	Flange	1.7500	0	0.8750	1	0.8750	1	0.6250	0	0.6250	0	0.8750	1	0.6250	0
		A36		A325X		A325X		A325X		A325N		A325X		A325N	

Feed Line/Linear Appurtenances - Entered As Round Or Flat

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Diameter in	Perimeter in	Weight plf
Climbing Ladder (Af) (Existing)	A	No	Af (CaAa)	120.00 - 0.00	0.0000	0	1	1	3.0000	3.0000		8.40
Safety Line 3/8 (Existing)	A	No	Ar (CaAa)	120.00 - 0.00	0.0000	0	1	1	0.3750	0.3750		0.22
Feedline Ladder (Af) (Existing) ***	С	No	Af (CaAa)	120.00 - 0.00	-1.5000	0	2	1	3.0000	3.0000		8.40
(2) (7/8) + (2) (1/2) (Washoe County -	С	No	Ar (CaAa)	120.00 - 8.00	1.0000	0.1	4	2	0.5000	1.0300		0.33

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	6 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

Description	Face or Leg	Allow Shield	Component Type	Placement ft	Face Offset in	Lateral Offset (Frac FW)	#	# Per Row	Clear Spacing in	Width or Perimete Diameter in in	er Weight
Existing)	Leg			<i>Ji</i>	ııı	(Prac Pri)		Now	ın	in in	py
LDF6-50A(1- 1/4") (Washoe County - Existing) ***	C	No	Ar (CaAa)	112.00 - 8.00	0.0000	0	1	1	0.5000	1.5500	0.66
LDF7-50A(1- 5/8") (Washoe County - Existing)	С	No	Ar (CaAa)	100.00 - 8.00	0.0000	0.05	2	2	0.5000	1.9800	0.82
LDF7-50A(1- 5/8") (Washoe County - Existing) ***	С	No	Ar (CaAa)	100.00 - 8.00	0.0000	0.05	1	1	0.5000	1.9800	0.82
LDF6-50A(1- 1/4") (Washoe County - Existing)	С	No	Ar (CaAa)	86.00 - 31.50	1.0000	0.05	1	1	0.5000	1.5500	0.66
LXISTING) LDF6-50A(1-1/4") (Washoe County - Existing) ***	C	No	Ar (CaAa)	31.50 - 8.00	1.5000	0.05	2	2	0.5000	1.5500	0.66
E60 (Washoe County - Existing)	С	No	Ar (CaAa)	76.50 - 8.00	1.0000	0.08	1	1	0.5000	2.2000	1.10
LDF5-50A(7/ 8") (Washoe County - Existing) ***	С	No	Ar (CaAa)	60.00 - 8.00	0.0000	0	3	3	0.5000	1.0900	0.33
E60 (Washoe County - Existing)	С	No	Ar (CaAa)	48.50 - 37.00	-1.0000	0.1	1	1	0.5000	2.2000	1.10
E60 (Washoe County - Existing)	С	No	Ar (CaAa)	37.00 - 8.00	-1.0000	0.1	2	2	0.5000	2.2000	1.10
(1) (1/4") + (1) (3/8) (Washoe County - Existing)	С	No	Ar (CaAa)	17.00 - 8.00	0.0000	0.4	2	2	0.4400	0.4400	0.08

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	7 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Tower	Tower	Face	A_R	A_F	C_AA_A	C_AA_A	Weight
Section	Elevation				In Face	Out Face	
	ft		ft^2	ft^2	ft^2	ft^2	K
T1	120.00-100.00	A	0.000	0.000	10.750	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	30.100	0.000	0.37
T2	100.00-80.00	A	0.000	0.000	10.750	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	44.150	0.000	0.43
T3	80.00-60.00	Α	0.000	0.000	10.750	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	49.950	0.000	0.46
T4	60.00-40.00	Α	0.000	0.000	10.750	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	59.130	0.000	0.49
T5	40.00-20.00	Α	0.000	0.000	10.750	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	67.183	0.000	0.53
T6	20.00-0.00	A	0.000	0.000	10.750	0.000	0.17
		В	0.000	0.000	0.000	0.000	0.00
		C	0.000	0.000	50.288	0.000	0.46

Feed Line Center of Pressure

Section	Elevation	CP_X	CP_Z	CP_X	CP_Z
Section	Lievation	CI X	CIZ	Ice	Ice
	ft	in	in	in	in
T1	120.00-100.00	-0.8048	1.5783	-1.4012	1.3356
T2	100.00-80.00	-0.8675	2.3162	-1.3811	2.1561
T3	80.00-60.00	-1.0563	2.9894	-1.6052	2.8068
T4	60.00-40.00	-1.1722	3.7846	-1.7265	3.6012
T5	40.00-20.00	-1.3866	4.4695	-1.9494	4.2783
T6	20.00-0.00	-1.4494	3.8685	-2.1227	3.5314

Shielding Factor Ka

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	_	Segment Elev.	No Ice	Ice
T1	1	Climbing Ladder (Af)	100.00 -	0.6000	0.6000
			120.00		
T1	2	Safety Line 3/8	100.00 -	0.6000	0.6000
			120.00		
T1	3	Feedline Ladder (Af)		0.6000	0.6000
			120.00		
T1	5	(2)(7/8) + (2)(1/2)		0.6000	0.6000
			120.00		
T1	8	LDF6-50A(1-1/4")	100.00 -	0.6000	0.6000
			112.00		
T2	1	Climbing Ladder (Af)			0.6000
T2	2	Safety Line 3/8			0.6000
T2	3	Feedline Ladder (Af)			0.6000
T2	5	(2)(7/8) + (2)(1/2)			0.6000
T2	8	LDF6-50A(1-1/4")			0.6000
T2	10	LDF7-50A(1-5/8")	80.00 - 100.00	0.6000	0.6000

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	8 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

Tower	Feed Line	Description	Feed Line	K_a	K_a
Section	Record No.	Description	Segment Elev.	No Ice	Ice
T2	11	LDF7-50A(1-5/8")	80.00 - 100.00	0.6000	0.6000
T2	13	LDF/-30A(1-3/8) LDF6-50A(1-1/4")	80.00 - 100.00	0.6000	0.6000
T3	13	Climbing Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T3		Safety Line 3/8	60.00 - 80.00	0.6000	0.6000
T3	2 3		60.00 - 80.00	0.6000	0.6000
T3	5	Feedline Ladder (Af)	60.00 - 80.00	0.6000	0.6000
T3	8	(2)(7/8) + (2)(1/2)		0.6000	0.6000
T3		LDF6-50A(1-1/4")	60.00 - 80.00		
T3	10	LDF7-50A(1-5/8")	60.00 - 80.00	0.6000	0.6000
-	11	LDF7-50A(1-5/8")	60.00 - 80.00	0.6000	0.6000
T3	13	LDF6-50A(1-1/4")	60.00 - 80.00	0.6000	0.6000
T3	16	E60	60.00 - 76.50	0.6000	0.6000
T4	1	Climbing Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T4	2	Safety Line 3/8	40.00 - 60.00	0.6000	0.6000
T4	3	Feedline Ladder (Af)	40.00 - 60.00	0.6000	0.6000
T4	5	(2)(7/8) + (2)(1/2)	40.00 - 60.00	0.6000	0.6000
T4	8	LDF6-50A(1-1/4")	40.00 - 60.00	0.6000	0.6000
T4	10	LDF7-50A(1-5/8")	40.00 - 60.00	0.6000	0.6000
T4	11	LDF7-50A(1-5/8")	40.00 - 60.00	0.6000	0.6000
T4	13	LDF6-50A(1-1/4")	40.00 - 60.00	0.6000	0.6000
T4	16	E60	40.00 - 60.00	0.6000	0.6000
T4	18	LDF5-50A(7/8")	40.00 - 60.00	0.6000	0.6000
T4	20	E60	40.00 - 48.50	0.6000	0.6000
T5	1	Climbing Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T5	2	Safety Line 3/8	20.00 - 40.00	0.6000	0.6000
T5	3	Feedline Ladder (Af)	20.00 - 40.00	0.6000	0.6000
T5	5	(2)(7/8) + (2)(1/2)	20.00 - 40.00	0.6000	0.6000
T5	8	LDF6-50A(1-1/4")	20.00 - 40.00	0.6000	0.6000
T5	10	LDF7-50A(1-5/8")	20.00 - 40.00	0.6000	0.6000
T5	11	LDF7-50A(1-5/8")	20.00 - 40.00	0.6000	0.6000
T5	13	LDF6-50A(1-1/4")	31.50 - 40.00	0.6000	0.6000
T5	14	LDF6-50A(1-1/4")	20.00 - 31.50	0.6000	0.6000
T5	16	E60	20.00 - 40.00	0.6000	0.6000
T5	18	LDF5-50A(7/8")	20.00 - 40.00	0.6000	0.6000
T5	20	E60	37.00 - 40.00	0.6000	0.6000
T5	21	E60	20.00 - 37.00	0.6000	0.6000
Т6	1	Climbing Ladder (Af)	0.00 - 20.00	0.6000	0.6000
Т6	2	Safety Line 3/8	0.00 - 20.00	0.6000	0.6000
Т6	3	Feedline Ladder (Af)	0.00 - 20.00	0.6000	0.6000
Т6	5	(2)(7/8)+(2)(1/2)	8.00 - 20.00	0.6000	0.6000
Т6	8	LDF6-50A(1-1/4")	8.00 - 20.00	0.6000	0.6000
Т6	10	LDF7-50A(1-5/8")	8.00 - 20.00	0.6000	0.6000
Т6	11	LDF7-50A(1-5/8")	8.00 - 20.00	0.6000	0.6000
Т6	14	LDF6-50A(1-1/4")	8.00 - 20.00	0.6000	0.6000
Т6	16	E60	8.00 - 20.00	0.6000	0.6000
Т6	18	LDF5-50A(7/8")	8.00 - 20.00	0.6000	0.6000
Т6	21	E60	8.00 - 20.00	0.6000	0.6000
T6	23	(1)(1/4") + (1)(3/8)	8.00 - 17.00	0.6000	0.6000

Discrete Tower Loads

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	9 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Washoe County	Designed by Hyun D. Kim

Description	Face or	Offset Type	Offsets: Horz	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert	0	ft		ft²	ft²	K
			ft ft ft		Ji		Ji	Ji	Λ
6' x 4-1/2" Horizontal Pipe (Existing)	A	From Face	0.00	0.0000	118.00	No Ice	1.35	0.02	0.04
6' x 4-1/2" Horizontal Pipe (Existing)	A	From Face	0.00 0.00 0.00	0.0000	115.00	No Ice	1.35	0.02	0.04
6' x 4-1/2" Horizontal Pipe (Existing)	A	From Face	0.00 0.00 0.00	0.0000	112.00	No Ice	1.35	0.02	0.04
12' x 4-1/2" Horizontal Pipe (Existing)	A	From Face	0.00 0.00 0.00	0.0000	38.00	No Ice	3.00	0.02	0.08
12' x 4-1/2" Horizontal Pipe (Existing)	В	From Face	0.00 0.00 0.00 0.00	0.0000	38.00	No Ice	3.00	0.02	0.08
*** Pipe Mount [PM 601-3] (Washoe County - Existing)	C	None		0.0000	120.00	No Ice	4.39	4.39	0.20
3" Dia 10' Omni (Washoe County - Existing)	A	From Leg	1.00 0.00	0.0000	120.00	No Ice	2.24	2.24	0.04
3" Dia 12' Omni (Washoe County - Existing)	В	From Leg	5.00 1.00 0.00 6.00	0.0000	120.00	No Ice	2.52	2.52	0.02
3" Dia 4' Omni (Washoe County - Existing)	С	From Leg	1.00 0.00 2.00	0.0000	120.00	No Ice	0.80	0.80	0.02
*** 12"x6" TMA	A	From Leg	0.00	0.0000	118.00	No Ice	0.60	0.41	0.01
(Washoe County - Existing) ***			0.00 0.00						
Pipe Mount [PM 601-1] (Washoe County - Existing)	С	From Leg	0.00 0.00 0.00	0.0000	112.00	No Ice	3.00	0.90	0.07
***			0.00						
Side Arm Mount [8' SO 308-3] (Washoe County - Existing)	С	None		0.0000	100.00	No Ice	6.01	6.01	0.21
3" Dia 8' Omni (Washoe County - Existing)	A	From Leg	8.00 0.00	0.0000	100.00	No Ice	1.82	1.82	0.03
3" Dia 8' Omni (Washoe County - Existing)	В	From Leg	4.00 8.00 0.00	0.0000	100.00	No Ice	1.82	1.82	0.03
3" Dia 4' Omni (Washoe County - Existing)	С	From Leg	4.00 8.00 0.00 2.00	0.0000	100.00	No Ice	0.81	0.81	0.02
Pipe Mount [PM 602-1] (Washoe County - Existing)	В	From Leg	0.00	0.0000	86.00	No Ice	5.25	1.58	0.09
MD-S6 (for 6' MW) : Ice Shield	В	From Leg	0.00 1.00 0.00	0.0000	86.00	No Ice	1.67	0.80	0.44
(Washoe County - Existing) *** Pina Mount IPM 602.11	A	Erom I	2.00	0.0000	76.50	No I	5.25	1.50	0.00
Pipe Mount [PM 602-1]	A	From Leg	0.00	0.0000	76.50	No Ice	5.25	1.58	0.09

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	10 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

Description	Face or	Offset Type	Offsets: Horz Lateral	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
	Leg		Lateral Vert ft ft ft	0	ft		ft²	ft²	K
(Washoe County - Existing)			0.00						
MD-S8 (for 8' MW) : Ice Shield	A	From Leg	0.00 1.00 0.00	11.7000	76.50	No Ice	3.80	2.40	0.57
(Washoe County - Existing)			2.50						
Side Arm Mount [8' SO 308-3]	C	None		0.0000	60.00	No Ice	6.01	6.01	0.21
(Washoe County - Existing)	C	E I	0.00	0.0000	(0.00	N- I	2.07	2.07	0.05
4" Dia 12' Omni (Washoe County - Existing)	С	From Leg	8.00 0.00 6.00	0.0000	60.00	No Ice	2.87	2.87	0.05
3" Dia 8' Omni	A	From Leg	8.00	0.0000	60.00	No Ice	1.91	1.91	0.03
(Washoe County - Existing)			0.00 4.00						
3" Dia 5' Omni (Washoe County - Existing)	В	From Leg	8.00 0.00	0.0000	60.00	No Ice	1.12	1.12	0.02
***			2.50						
Pipe Mount [PM 602-1] (Washoe County - Existing)	A	From Leg	0.00	0.0000	48.50	No Ice	5.25	1.58	0.09
MD-S8 (for 8' MW) : Ice Shield	A	From Leg	0.00 1.00 0.00	11.7000	48.50	No Ice	3.80	2.40	0.57
(Washoe County - Existing) ***			2.50						
Pipe Mount [PM 602-1] (Washoe County - Existing)	A	From Leg	0.00 0.00 0.00	0.0000	37.00	No Ice	5.25	1.58	0.09
MD-SQ4 (4ft sq) : Ice Shield (Washoe County - Existing)	A	From Leg	1.00 0.00 2.00	0.0000	37.00	No Ice	0.80	0.80	0.13
***			2.00						
Pipe Mount [PM 602-1] (Washoe County - Existing)	С	From Leg	0.00	0.0000	31.50	No Ice	5.25	1.58	0.09
MD-SQ4 (4ft sq) : Ice Shield (Washoe County - Existing)	C	From Leg	0.00 1.00 0.00	0.0000	31.50	No Ice	0.80	0.80	0.13
***			1.50						
Pipe Mount [PM 602-1] (Washoe County - Existing)	C	From Face	0.00 4.00	0.0000	17.00	No Ice	5.25	1.58	0.09
MD-SQ4 (4ft sq): Ice Shield (Washoe County - Existing)	C	From Face	3.00 1.00 4.00	0.0000	17.00	No Ice	0.80	0.80	0.13
Yagi (small)	C	From Face	0.00 1.00	0.0000	17.00	No Ice	0.97	0.97	0.00
(Washoe County - Existing)			4.00 0.00						
***		г т	0.00	0.0000	00.00	NI I	0.60	0.70	0.01
Stiffener Plate at elevation 80' (Washoe County - Proposed)	A	From Leg	0.00 0.00 0.00	0.0000	80.00	No Ice	0.60	0.60	0.01
Stiffener Plate at elevation 80' (Washoe County - Proposed)	В	From Leg	0.00 0.00	0.0000	80.00	No Ice	0.60	0.60	0.01
Stiffener Plate at elevation 80'	C	From Leg	0.00 0.00	0.0000	80.00	No Ice	0.60	0.60	0.01

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	11 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Designed by
Washoe County	Hyun D. Kim

Description	Face or Leg	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	Placement		C_AA_A Front	C_AA_A Side	Weight
			ft ft ft	0	ft		ft²	ft²	K
(Washoe County - Proposed)			0.00						
			0.00						
Stiffener Plate at elevation 0'	Α	From Leg	0.00	0.0000	0.00	No Ice	0.70	0.70	0.01
(Washoe County - Proposed)			0.00						
			0.00						
Stiffener Plate at elevation 0'	C	From Leg	0.00	0.0000	0.00	No Ice	0.70	0.70	0.01
(Washoe County - Proposed)		_	0.00						
•			0.00						
Stiffener Plate at elevation 0'	В	From Leg	0.00	0.0000	0.00	No Ice	0.70	0.70	0.01
(Washoe County - Proposed)		J	0.00						
, J F			0.00						

					Dis	shes					
Description	Face or Leg	Dish Type	Offset Type	Offsets: Horz Lateral Vert	Azimuth Adjustment	3 dB Beam Width	Elevation	Outside Diameter		Aperture Area	Weight
				ft	0	0	ft	ft		ft^2	K
Andrew 4' HP Dish (Washoe County - Existing)	С	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 0.00	-60.0000		112.00	4.23	No Ice	14.08	0.10
6' Dish w/Radome (Washoe County - Existing)	В	Paraboloid w/Radome	From Leg	1.00 0.00 -2.00	0.0000		86.00	6.00	No Ice	34.04	0.19
UXA8-59B (Washoe County - Existing)	A	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 -2.50	11.7000		76.50	8.62	No Ice	58.31	0.40
UXA8-59B (Washoe County - Existing)	A	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 -2.50	11.7000		48.50	8.62	No Ice	58.31	0.40
PAD6-65 (Washoe County - Existing)	A	Paraboloid w/Radome	From Leg	1.00 0.00 -2.00	0.0000		37.00	6.58	No Ice	34.04	0.19
RFS 4' HP Dish (Washoe County - Existing)	С	Paraboloid w/Shroud (HP)	From Leg	1.00 0.00 -1.50	60.0000		31.50	4.31	No Ice	14.58	0.09
2' Dish w/Radome (Washoe County - Existing)	С	Paraboloid w/Radome	From Face	1.00 4.00 -3.00	0.0000		17.00	2.00	No Ice	3.14	0.07

Load Combinations

Comb.	Description	
No.	,	
1	D 101	

- Dead Only 1.2 Dead+1.6 Wind 0 deg No Ice 0.9 Dead+1.6 Wind 0 deg No Ice
- 1 2 3

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	12 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Comb.	Description	
No.		
4	1.2 Dead+1.6 Wind 30 deg - No Ice	
5	0.9 Dead+1.6 Wind 30 deg - No Ice	
6	1.2 Dead+1.6 Wind 60 deg - No Ice	
7	0.9 Dead+1.6 Wind 60 deg - No Ice	
8	1.2 Dead+1.6 Wind 90 deg - No Ice	
9	0.9 Dead+1.6 Wind 90 deg - No Ice	
10	1.2 Dead+1.6 Wind 120 deg - No Ice	
11	0.9 Dead+1.6 Wind 120 deg - No Ice	
12	1.2 Dead+1.6 Wind 150 deg - No Ice	
13	0.9 Dead+1.6 Wind 150 deg - No Ice	
14	1.2 Dead+1.6 Wind 180 deg - No Ice	
15	0.9 Dead+1.6 Wind 180 deg - No Ice	
16	1.2 Dead+1.6 Wind 210 deg - No Ice	
17	0.9 Dead+1.6 Wind 210 deg - No Ice	
18	1.2 Dead+1.6 Wind 240 deg - No Ice	
19	0.9 Dead+1.6 Wind 240 deg - No Ice	
20	1.2 Dead+1.6 Wind 270 deg - No Ice	
21	0.9 Dead+1.6 Wind 270 deg - No Ice	
22	1.2 Dead+1.6 Wind 300 deg - No Ice	
23	0.9 Dead+1.6 Wind 300 deg - No Ice	
24	1.2 Dead+1.6 Wind 330 deg - No Ice	
25	0.9 Dead+1.6 Wind 330 deg - No Ice	
26	Dead+Wind 0 deg - Service	
27	Dead+Wind 30 deg - Service	
28	Dead+Wind 60 deg - Service	
29	Dead+Wind 90 deg - Service	
30	Dead+Wind 120 deg - Service	
31	Dead+Wind 150 deg - Service	
32	Dead+Wind 180 deg - Service	
33	Dead+Wind 210 deg - Service	
34	Dead+Wind 240 deg - Service	
35	Dead+Wind 270 deg - Service	
36	Dead+Wind 300 deg - Service	
37	Dead+Wind 330 deg - Service	

Maximum Member Forces

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
m.	1.00			Comb.	K	kip-ft	kip-ft
T1	120 - 100	Leg	Max Tension	15	9.09	0.15	-0.23
			Max. Compression	2	-11.13	0.07	0.10
			Max. Mx	4	-2.48	0.54	0.37
			Max. My	2	0.73	0.15	-0.82
			Max. Vy	4	-0.71	-0.39	0.37
			Max. Vx	2	1.14	0.15	0.67
		Diagonal	Max Tension	5	8.76	0.00	0.00
		•	Max. Compression	4	-8.84	0.00	0.00
			Max. Mx	2	-4.40	0.02	0.00
			Max. Vy	2	-0.01	0.00	0.00
		Horizontal	Max Tension	4	3.07	0.01	0.00
			Max. Compression	2	-3.23	0.02	0.00
			Max. Mx	14	-0.12	0.02	0.00
			Max. My	19	-0.01	-0.00	-0.00
			Max. Vy	14	-0.01	0.02	0.00
			Max. Vx	19	0.00	0.00	0.00
		Top Girt	Max Tension	23	0.56	0.00	0.00
		- r	Max. Compression	10	-0.57	0.00	0.00
			Max. Mx	22	-0.34	0.00	0.00

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	13 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Washoe County	Designed by Hyun D. Kim

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axis Moment
	<i>y</i> .	JF -		Comb.	K	kip-ft	kip-ft
			Max. My	19	0.23	0.00	-0.00
			Max. Vy	22	-0.01	0.00	0.00
			Max. Vx	19	0.00	0.00	0.00
T2	100 - 80	Leg	Max Tension	15	41.96	-1.31	0.31
			Max. Compression	2	-48.99 20.64	1.39	-0.47
			Max. Mx Max. My	22 17	39.64 -3.78	-1.40 0.01	-0.48 1.68
			Max. Wy	22	-0.73	-0.63	0.14
			Max. Vx	5	-0.84	-0.06	-0.76
		Diagonal	Max Tension	20	10.25	0.00	0.00
			Max. Compression	20	-10.33	0.00	0.00
			Max. Mx	2	8.00	-0.02	0.00
			Max. My	2	-0.42	0.00	0.00
			Max. Vy	2	0.01	0.00	0.00
			Max. Vx	2	-0.00	0.00	0.00
		Horizontal	Max Tension	20	4.85	0.01	0.00
			Max. Compression	8	-4.83	0.00	0.00
			Max. Mx	14	-0.63	0.07	0.00
			Max. My Max. Vy	14 14	-0.63 0.03	0.07 0.07	0.00 0.00
			Max. Vx	2	-0.00	0.07	0.00
		Top Girt	Max Tension	5	3.27	0.00	0.00
		rop Giit	Max. Compression	2	-3.66	0.04	0.00
			Max. Mx	14	-0.46	0.06	0.00
			Max. My	2	0.35	-0.04	0.00
			Max. Vy	14	-0.03	0.06	0.00
			Max. Vx	2	0.00	0.00	0.00
T3	80 - 60	Leg	Max Tension	23	78.14	-2.21	-1.71
			Max. Compression	2	-92.12	0.33	-0.16
			Max. Mx	14	52.35	3.82	-0.74
			Max. My	9 14	-1.40 1.90	0.36 -3.38	-5.18 -0.74
			Max. Vy Max. Vx	8	-2.33	-3.38 0.34	3.80
		Diagonal	Max Tension	16	20.68	0.00	0.00
		Diagonar	Max. Compression	16	-20.85	0.00	0.00
			Max. Mx	2	17.26	0.08	0.00
			Max. My	2	0.11	0.00	-0.01
			Max. Vy	2	-0.03	0.00	0.00
			Max. Vx	2	0.00	0.00	0.00
		Horizontal	Max Tension	16	8.74	0.00	0.00
			Max. Compression	18	-8.51	0.00	0.00
			Max. Mx	22 2	-1.19 1.69	0.11 -0.08	0.01 0.01
			Max. My Max. Vy	22	-0.04	0.11	0.01
			Max. Vx	2	0.00	0.00	0.00
		Top Girt	Max Tension	13	5.94	0.01	0.01
		or our	Max. Compression	24	-6.18	0.00	0.00
			Max. Mx	14	-0.85	0.10	0.01
			Max. My	14	-1.59	0.10	0.01
			Max. Vy	14	0.04	0.10	0.01
		_	Max. Vx	2	-0.00	0.00	0.00
T4	60 - 40	Leg	Max Tension	15	135.12	-3.69	-0.45
			Max. Compression	2	-156.91	4.06	0.30
			Max. Mx	14 8	132.39	-4.48 0.29	-0.60
			Max. My Max. Vy	8 14	-8.51 -1.66	0.29 -3.70	4.73 -0.45
			Max. Vy Max. Vx	8	1.87	0.29	3.78
		Diagonal	Max Tension	17	23.13	0.00	0.00
		2 ingoini	Max. Compression	16	-23.36	0.00	0.00
			Max. Mx	2	18.46	0.10	0.00

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	14 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Section No.	Elevation ft	Component Type	Condition	Gov. Load	Axial	Major Axis Moment	Minor Axi Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vy	2	-0.03	0.00	0.00
			Max. Vx	2	0.00	0.00	0.00
		Horizontal	Max Tension	16	11.41	0.00	0.00
			Max. Compression	16	-11.09	0.00	0.00
			Max. Mx	14	1.33	-0.18	-0.01
			Max. My	22	1.46	-0.17	-0.01
			Max. Vy	14	0.06	-0.18	-0.01
		T. C.	Max. Vx	6	0.00	0.00	0.00
		Top Girt	Max Tension	16	8.39	0.00	0.00
			Max. Compression Max. Mx	17 14	-8.48 -0.57	0.00 0.08	0.00 0.01
			Max. My	2	0.77	-0.06	0.01
			Max. Vy	14	-0.03	0.08	0.01
			Max. Vx	2	0.00	0.08	0.01
T5	40 - 20	Leg	Max Tension	15	201.19	-4.09	0.05
13	40 - 20	Leg	Max. Compression	2	-228.61	3.22	0.03
			Max. Mx	14	164.75	-4.48	-0.60
			Max. My	8	-10.60	0.29	4.73
			Max. Vy	11	0.93	4.04	0.68
			Max. Vx	13	-1.32	0.18	-3.72
		Diagonal	Max Tension	17	27.49	0.00	0.00
			Max. Compression	16	-27.86	0.00	0.00
			Max. Mx	2	20.42	0.18	0.00
			Max. My	2	-1.16	0.00	-0.01
			Max. Vy	2	-0.06	0.00	0.00
			Max. Vx	2	0.00	0.00	0.00
		Horizontal	Max Tension	16	15.10	0.00	0.00
			Max. Compression	16	-15.21	0.00	0.00
			Max. Mx	14	-1.87	-0.28	-0.03
			Max. My	18	1.69	0.13	-0.03
			Max. Vy	14	0.09	-0.28	-0.03
			Max. Vx	2	-0.01	0.00	0.00
		Top Girt	Max Tension	16	13.73	0.00	0.00
			Max. Compression	16	-13.47	0.00	0.00
			Max. Mx	14	-1.43	0.14	0.02
			Max. My	14	-1.43	0.14	0.02
			Max. Vy	14	0.04	0.14	0.02
TC	20. 0	T	Max. Vx	14	0.00	0.00	0.00
T6	20 - 0	Leg	Max Tension	15	270.32	-6.66	-0.17
			Max. Compression Max. Mx	2 3	-302.48 -263.96	0.00 6.93	0.00 0.07
			Max. My	13	-30.00	0.53	-6.30
			Max. Vy	3	1.06	6.93	0.07
			Max. Vx	13	-1.00	0.53	-6.30
		Diagonal	Max Tension	17	27.18	0.00	0.00
		Diagonai	Max. Compression	16	-27.59	0.00	0.00
			Max. Mx	2	21.02	0.21	0.00
			Max. My	2	-1.21	0.00	-0.01
			Max. Vy	2	-0.07	0.00	0.00
			Max. Vx	2	0.00	0.00	0.00
		Horizontal	Max Tension	16	16.58	0.00	0.00
			Max. Compression	16	-16.53	0.00	0.00
			Max. Mx	14	2.69	-0.26	-0.03
			Max. My	18	0.78	0.07	-0.03
			Max. Vy	14	0.09	-0.26	-0.03
			Max. Vx	8	-0.01	0.00	0.00
		Top Girt	Max Tension	16	15.10	0.00	0.00
			Max. Compression	17	-14.99	0.00	0.00
			Max. Mx	14	-1.53	-0.26	-0.03
			Max. My	18	0.54	0.08	-0.03
			Max. Vy	14	0.09	-0.26	-0.03

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	15 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Section	Elevation	Component	Condition	Gov.	Axial	Major Axis	Minor Axis
No.	ft	Туре		Load		Moment	Moment
				Comb.	K	kip-ft	kip-ft
			Max. Vx	2	-0.01	0.00	0.00

M	axi	imı	um	Rea	cti	ons

Location	Condition	Gov.	Vertical	Horizontal, X	Horizontal, 2
		Load	K	K	K
		Comb.			
Leg C	Max. Vert	18	328.77	34.67	-21.81
-	Max. H _x	18	328.77	34.67	-21.81
	Max. H _z	5	-245.65	-24.80	20.17
	Min. Vert	7	-276.17	-29.93	19.14
	Min. H _x	7	-276.17	-29.93	19.14
	Min. H _z	18	328.77	34.67	-21.81
Leg B	Max. Vert	10	317.41	-33.95	-20.49
	Max. H _x	23	-281.94	30.45	18.91
	Max. H _z	25	-247.17	25.34	18.98
	Min. Vert	23	-281.94	30.45	18.91
	Min. H _x	10	317.41	-33.95	-20.49
	Min. H _z	10	317.41	-33.95	-20.49
Leg A	Max. Vert	2	338.56	-0.70	41.90
	Max. H _x	21	-1.37	8.11	-0.63
	Max. H _z	2	338.56	-0.70	41.90
	Min. Vert	15	-304.19	0.99	-39.17
	Min. H _x	8	20.01	-8.23	1.75
	Min. Hz	15	-304.19	0.99	-39.17

Tower Mast Reaction Summary

Load Combination	Vertical	$Shear_x$	$Shear_z$	Overturning Moment, M_x	Overturning Moment, M _z	Torque
	K	K	K	kip-ft	kip-ft	kip-ft
Dead Only	29.84	0.00	0.00	-5.77	4.17	-0.00
1.2 Dead+1.6 Wind 0 deg - No	35.81	0.17	-73.10	-4242.91	-4.65	-17.44
Ice						
0.9 Dead+1.6 Wind 0 deg - No	26.86	0.17	-73.10	-4241.18	-5.90	-17.44
Ice						
1.2 Dead+1.6 Wind 30 deg - No	35.81	31.39	-60.57	-3531.10	-1780.07	-32.57
Ice						
0.9 Dead+1.6 Wind 30 deg - No	26.86	31.39	-60.57	-3529.37	-1781.32	-32.57
Ice	25.01	52.42	26.56	2150 65	2022.20	21.50
1.2 Dead+1.6 Wind 60 deg - No	35.81	53.42	-36.56	-2170.67	-3023.29	-31.58
Ice	26.06	52.42	26.56	2160.04	2024.54	21.50
0.9 Dead+1.6 Wind 60 deg - No	26.86	53.42	-36.56	-2168.94	-3024.54	-31.58
Ice 1.2 Dead+1.6 Wind 90 deg - No	35.81	64.52	-1.52	-104.85	-3710.70	-35.35
Ice	33.81	04.32	-1.32	-104.83	-3/10.70	-33.33
0.9 Dead+1.6 Wind 90 deg - No	26.86	64.52	-1.52	-103.12	-3711.95	-35.35
Ice	20.80	04.32	-1.32	-103.12	-3/11.93	-55.55
1.2 Dead+1.6 Wind 120 deg -	35.81	57.34	39.17	2270.99	-3270.90	-7.52
No Ice	33.01	37.34	37.17	2270.55	3270.70	1.52
0.9 Dead+1.6 Wind 120 deg -	26.86	57.34	39.17	2272.72	-3272.16	-7.52
No Ice	20.00	37.31	37.17	2272.72	3272.10	7.52
1.2 Dead+1.6 Wind 150 deg -	35.81	30.27	63.85	3688.93	-1702.40	15.96

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	16 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Load	Vertical	$Shear_x$	$Shear_z$	Overturning	Overturning	Torque
Combination				Moment, M_x	Moment, Mz	
	K	K	K	kip-ft	kip-ft	kip-ft
No Ice						
0.9 Dead+1.6 Wind 150 deg -	26.86	30.27	63.85	3690.66	-1703.65	15.96
No Ice						
1.2 Dead+1.6 Wind 180 deg -	35.81	-0.87	71.03	4066.16	75.52	24.16
No Ice						
0.9 Dead+1.6 Wind 180 deg -	26.86	-0.87	71.03	4067.89	74.27	24.16
No Ice						
1.2 Dead+1.6 Wind 210 deg -	35.81	-33.38	62.96	3624.02	1908.96	26.73
No Ice						
0.9 Dead+1.6 Wind 210 deg -	26.86	-33.38	62.96	3625.75	1907.71	26.73
No Ice						
1.2 Dead+1.6 Wind 240 deg -	35.81	-58.65	41.35	2404.33	3364.33	24.48
No Ice						
0.9 Dead+1.6 Wind 240 deg -	26.86	-58.65	41.35	2406.06	3363.08	24.48
No Ice						
1.2 Dead+1.6 Wind 270 deg -	35.81	-64.79	2.25	132.38	3766.56	32.84
No Ice						
0.9 Dead+1.6 Wind 270 deg -	26.86	-64.79	2.25	134.11	3765.30	32.84
No Ice						
1.2 Dead+1.6 Wind 300 deg -	35.81	-54.26	-36.09	-2146.00	3126.57	21.15
No Ice						
0.9 Dead+1.6 Wind 300 deg -	26.86	-54.26	-36.09	-2144.27	3125.31	21.15
No Ice						
1.2 Dead+1.6 Wind 330 deg -	35.81	-30.30	-61.86	-3638.22	1743.56	-4.83
No Ice						
0.9 Dead+1.6 Wind 330 deg -	26.86	-30.30	-61.86	-3636.49	1742.31	-4.83
No Ice						
Dead+Wind 0 deg - Service	29.84	0.03	-14.10	-822.89	2.31	-3.36
Dead+Wind 30 deg - Service	29.84	6.06	-11.68	-685.58	-340.17	-6.28
Dead+Wind 60 deg - Service	29.84	10.30	-7.05	-423.16	-579.99	-6.09
Dead+Wind 90 deg - Service	29.84	12.45	-0.29	-24.66	-712.59	-6.82
Dead+Wind 120 deg - Service	29.84	11.06	7.56	433.65	-627.76	-1.45
Dead+Wind 150 deg - Service	29.84	5.84	12.32	707.17	-325.19	3.08
Dead+Wind 180 deg - Service	29.84	-0.17	13.70	779.94	17.77	4.66
Dead+Wind 210 deg - Service	29.84	-6.44	12.15	694.65	371.45	5.16
Dead+Wind 240 deg - Service	29.84	-11.31	7.98	459.37	652.19	4.72
Dead+Wind 270 deg - Service	29.84	-12.50	0.43	21.11	729.78	6.33
Dead+Wind 300 deg - Service	29.84	-10.47	-6.96	-418.40	606.32	4.08
Dead+Wind 330 deg - Service	29.84	-5.84	-11.93	-706.25	339.54	-0.93

Solution Summary

	Su	m of Applied Force:	S		Sum of Reaction	S	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
1	0.00	-29.84	0.00	0.00	29.84	0.00	0.000%
2	0.17	-35.81	-73.10	-0.17	35.81	73.10	0.000%
3	0.17	-26.86	-73.10	-0.17	26.86	73.10	0.000%
4	31.39	-35.81	-60.57	-31.39	35.81	60.57	0.000%
5	31.39	-26.86	-60.57	-31.39	26.86	60.57	0.000%
6	53.42	-35.81	-36.56	-53.42	35.81	36.56	0.000%
7	53.42	-26.86	-36.56	-53.42	26.86	36.56	0.000%
8	64.52	-35.81	-1.52	-64.52	35.81	1.52	0.000%
9	64.52	-26.86	-1.52	-64.52	26.86	1.52	0.000%
10	57.34	-35.81	39.17	-57.34	35.81	-39.17	0.000%
11	57.34	-26.86	39.17	-57.34	26.86	-39.17	0.000%
12	30.27	-35.81	63.85	-30.27	35.81	-63.85	0.000%
13	30.27	-26.86	63.85	-30.27	26.86	-63.85	0.000%

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	17 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

	Sur	n of Applied Force.	S		Sum of Reaction	ıs	
Load	PX	PY	PZ	PX	PY	PZ	% Error
Comb.	K	K	K	K	K	K	
14	-0.87	-35.81	71.03	0.87	35.81	-71.03	0.000%
15	-0.87	-26.86	71.03	0.87	26.86	-71.03	0.000%
16	-33.38	-35.81	62.96	33.38	35.81	-62.96	0.000%
17	-33.38	-26.86	62.96	33.38	26.86	-62.96	0.000%
18	-58.65	-35.81	41.35	58.65	35.81	-41.35	0.000%
19	-58.65	-26.86	41.35	58.65	26.86	-41.35	0.000%
20	-64.79	-35.81	2.25	64.79	35.81	-2.25	0.000%
21	-64.79	-26.86	2.25	64.79	26.86	-2.25	0.000%
22	-54.26	-35.81	-36.09	54.26	35.81	36.09	0.000%
23	-54.26	-26.86	-36.09	54.26	26.86	36.09	0.000%
24	-30.30	-35.81	-61.86	30.30	35.81	61.86	0.000%
25	-30.30	-26.86	-61.86	30.30	26.86	61.86	0.000%
26	0.03	-29.84	-14.10	-0.03	29.84	14.10	0.000%
27	6.06	-29.84	-11.68	-6.06	29.84	11.68	0.000%
28	10.30	-29.84	-7.05	-10.30	29.84	7.05	0.000%
29	12.45	-29.84	-0.29	-12.45	29.84	0.29	0.000%
30	11.06	-29.84	7.56	-11.06	29.84	-7.56	0.000%
31	5.84	-29.84	12.32	-5.84	29.84	-12.32	0.000%
32	-0.17	-29.84	13.70	0.17	29.84	-13.70	0.000%
33	-6.44	-29.84	12.15	6.44	29.84	-12.15	0.000%
34	-11.31	-29.84	7.98	11.31	29.84	-7.98	0.000%
35	-12.50	-29.84	0.43	12.50	29.84	-0.43	0.000%
36	-10.47	-29.84	-6.96	10.47	29.84	6.96	0.000%
37	-5.84	-29.84	-11.93	5.84	29.84	11.93	0.000%

Maximum Tower Deflections - Service Wind

Elevation	Horz.	Gov.	Tilt	Twist
	Deflection	Load		
ft	in	Comb.	0	0
120 - 100	1.55	26	0.1128	0.0282
100 - 80	1.08	26	0.1062	0.0206
80 - 60	0.67	26	0.0795	0.0206
60 - 40	0.37	26	0.0577	0.0162
40 - 20	0.16	26	0.0366	0.0098
20 - 0	0.04	26	0.0177	0.0033
	ft 120 - 100 100 - 80 80 - 60 60 - 40 40 - 20	ft in 120 - 100 1.55 100 - 80 1.08 80 - 60 0.67 60 - 40 0.37 40 - 20 0.16	ft Deflection in Load Comb. 120 - 100 1.55 26 100 - 80 1.08 26 80 - 60 0.67 26 60 - 40 0.37 26 40 - 20 0.16 26	ft in Load Comb. 120 - 100 1.55 26 0.1128 100 - 80 1.08 26 0.1062 80 - 60 0.67 26 0.0795 60 - 40 0.37 26 0.0577 40 - 20 0.16 26 0.0366

Critical Deflections and Radius of Curvature - Service Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
120.00	Pipe Mount [PM 601-3]	26	1.55	0.1128	0.0282	236203
118.00	6' x 4-1/2" Horizontal Pipe	26	1.50	0.1127	0.0275	236203
115.00	6' x 4-1/2" Horizontal Pipe	26	1.43	0.1125	0.0263	236203
112.00	Andrew 4' HP Dish	26	1.36	0.1121	0.0251	147627
100.00	Side Arm Mount [8' SO 308-3]	26	1.08	0.1062	0.0206	60806
86.00	Pipe Mount [PM 602-1]	26	0.78	0.0880	0.0185	46226
84.00	6' Dish w/Radome	26	0.75	0.0851	0.0194	44135
80.00	Stiffener Plate at elevation 80'	26	0.67	0.0795	0.0206	41786
76.50	Pipe Mount [PM 602-1]	26	0.61	0.0750	0.0208	43161
74.00	UXA8-59B	26	0.57	0.0721	0.0206	44997

tnx _T	<i>ower</i>

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	18 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Elevation	Appurtenance	Gov.	Deflection	Tilt	Twist	Radius of
		Load				Curvature
ft		Comb.	in	0	0	ft
60.00	Side Arm Mount [8' SO 308-3]	26	0.37	0.0577	0.0162	55870
48.50	Pipe Mount [PM 602-1]	26	0.24	0.0455	0.0124	55464
46.00	UXA8-59B	26	0.22	0.0428	0.0117	55173
38.00	12' x 4-1/2" Horizontal Pipe	26	0.15	0.0345	0.0091	54146
37.00	Pipe Mount [PM 602-1]	26	0.14	0.0336	0.0088	53990
35.00	PAD6-65	26	0.13	0.0316	0.0081	53669
31.50	Pipe Mount [PM 602-1]	26	0.10	0.0282	0.0069	53113
30.00	RFS 4' HP Dish	26	0.09	0.0268	0.0063	52878
17.00	Pipe Mount [PM 602-1]	26	0.03	0.0150	0.0026	60629
14.00	2' Dish w/Radome	26	0.03	0.0124	0.0020	73377
0.00	Stiffener Plate at elevation 0'	0	0.00	0.0000	0.0000	205454

Maximum Tower Deflections - Design Wind

Section	Elevation	Horz.	Gov.	Tilt	Twist
No.		Deflection	Load		
	ft	in	Comb.	0	0
T1	120 - 100	7.97	2	0.5850	0.1463
T2	100 - 80	5.52	2	0.5492	0.1067
T3	80 - 60	3.45	2	0.4066	0.1068
T4	60 - 40	1.92	2	0.2947	0.0838
T5	40 - 20	0.85	2	0.1868	0.0507
T6	20 - 0	0.23	2	0.0910	0.0169

Critical Deflections and Radius of Curvature - Design Wind

Elevation	Appurtenance	Gov. Load	Deflection	Tilt	Twist	Radius of Curvature
ft		Comb.	in	0	0	ft
120.00	Pipe Mount [PM 601-3]	2	7.97	0.5850	0.1463	47365
118.00	6' x 4-1/2" Horizontal Pipe	2	7.72	0.5845	0.1423	47365
115.00	6' x 4-1/2" Horizontal Pipe	2	7.34	0.5833	0.1364	47365
112.00	Andrew 4' HP Dish	2	6.97	0.5810	0.1304	29603
100.00	Side Arm Mount [8' SO 308-3]	2	5.52	0.5492	0.1067	12096
86.00	Pipe Mount [PM 602-1]	2	4.02	0.4519	0.0961	8798
84.00	6' Dish w/Radome	2	3.82	0.4363	0.1007	8488
80.00	Stiffener Plate at elevation 80'	2	3.45	0.4066	0.1068	8136
76.50	Pipe Mount [PM 602-1]	2	3.14	0.3834	0.1081	8358
74.00	UXA8-59B	2	2.94	0.3683	0.1069	8686
60.00	Side Arm Mount [8' SO 308-3]	2	1.92	0.2947	0.0838	10976
48.50	Pipe Mount [PM 602-1]	2	1.25	0.2326	0.0644	10938
46.00	UXA8-59B	2	1.12	0.2189	0.0605	10886
38.00	12' x 4-1/2" Horizontal Pipe	2	0.77	0.1765	0.0473	10676
37.00	Pipe Mount [PM 602-1]	2	0.73	0.1715	0.0455	10637
35.00	PAD6-65	2	0.65	0.1615	0.0419	10556
31.50	Pipe Mount [PM 602-1]	2	0.53	0.1445	0.0356	10414
30.00	RFS 4' HP Dish	2	0.48	0.1373	0.0329	10355
17.00	Pipe Mount [PM 602-1]	2	0.17	0.0773	0.0132	11776
14.00	2' Dish w/Radome	3	0.13	0.0636	0.0101	14251
0.00	Stiffener Plate at elevation 0'	0	0.00	0.0000	0.0000	39902

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	19 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

Bolt Design Data

Section No.	Elevation ft	Component Type	Bolt Grade	Bolt Size	Number Of Bolts	Maximum Load per Bolt K	Allowable Load K	Ratio Load Allowable	Allowable Ratio	Criteria
T1	120	Leg	A325X	0.6250	4	2.27	20.71	0.110	1	Bolt Tension
		Diagonal	A325X	0.6250	1	8.76	15.66	0.559	1	Member Bearing
		Horizontal	A325X	0.6250	1	3.07	6.83	0.450	1	Member Block Shear
		Top Girt	A325X	0.6250	1	0.56	6.83	0.082	1	Member Block Shear
T2	100	Leg	A325X	0.6250	4	10.49	20.71	0.507	1	Bolt Tension
		Diagonal	A325X	0.7500	1	10.25	12.62	0.813	1	Member Bearing
		Horizontal	A325X	0.7500	1	4.85	8.97	0.540	1	Member Block Shear
		Top Girt	A325X	0.7500	1	3.27	8.97	0.365	1	Member Block Shear
T3	80	Leg	A325X	0.8750	4	19.53	40.59	0.481	1	Bolt Tension
		Diagonal	A325X	0.8750	1	20.68	26.92	0.768	1	Member Block Shear
		Horizontal	A325X	0.8750	1	8.74	10.09	0.866	1	Member Block Shear
		Top Girt	A325X	0.8750	1	5.94	10.09	0.588	1	Member Block Shear
T4	60	Leg	A325X	0.8750	6	22.52	40.59	0.555	1	Bolt Tension
		Diagonal	A325X	0.8750	1	23.13	26.92	0.859	1	Member Block Shear
		Horizontal	A325X	0.8750	1	11.41	20.19	0.565	1	Member Block Shear
		Top Girt	A325X	0.8750	1	8.39	10.09	0.831	1	Member Block Shear
T5	40	Leg	A325X	1.1250	6	33.54	67.10	0.500	1	Bolt Tension
		Diagonal	A325X	0.8750	1	27.86	36.54	0.762	1	Gusset Bearing
		Horizontal	A325X	0.8750	1	15.10	29.58	0.510	1	Member Bearing
		Top Girt	A325X	0.8750	1	13.73	14.79	0.928	1	Member Bearing
T6	20	Diagonal	A325X	0.8750	1	27.59	36.54	0.755	1	Gusset Bearing
		Horizontal	A325X	0.8750	1	16.58	29.58	0.560	1	Member Bearing
		Top Girt	A325X	0.8750	1	15.10	29.58	0.511	1	Member Bearing

Compression Checks

Leg Design Data (Compression)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in ²	K	K	ϕP_n

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	20 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	P2.5x.203	20.00	6.67	84.4 K=1.00	1.7040	-11.13	37.27	0.299 1
T2	100 - 80	P3.5x.226	20.03	6.68	59.9 K=1.00	2.6795	-48.99	70.22	0.698 1
Т3	80 - 60	P6x.28	20.03	10.02	53.5 K=1.00	5.5813	-92.12	151.83	0.607 1
T4	60 - 40	P8x.322	20.03	10.02	40.9 K=1.00	8.3993	-156.91	242.85	0.646 ¹
T5	40 - 20	P10x.365	20.03	10.02	32.7 K=1.00	11.9083	-228.61	355.11	0.644 1
Т6	20 - 0	P12x.375	20.03	10.02	27.5 K=1.00	14.5790	-302.46	441.85	0.685 1

¹ P_u / ϕP_n controls

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	2L3x3x3/16x3/8	7.12	6.54	87.0 K=1.00	2.1800	-8.84	46.44	0.190 1
		2L 'a' > 37.3552 in - 14							•
T2	100 - 80	L3x3x1/4	7.53	6.90	139.9 K=1.00	1.4400	-10.33	16.61	0.622 1
T3	80 - 60	2L3x3x1/4x3/8	10.97	10.00	129.0 K=1.00	2.8800	-20.85	38.87	0.537 1
T4	60 - 40	2L3x3x1/4x3/8	11.42	10.37	133.8 K=1.00	2.8800	-23.36	36.34	0.643 1
T5	40 - 20	2L3x3x3/8x3/8	11.93	10.81	142.0 K=1.00	4.2200	-27.86	47.25	0.590 1
Т6	20 - 0	2L3x3x3/8x3/8	12.50	11.32	148.7 K=1.00	4.2200	-27.59	43.09	0.640 ¹

¹ P_u / ϕP_n controls

Horizontal Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	L2x2x3/16	5.00	2.26	94.4 K=1.37	0.7150	-3.23	14.49	0.223 1
T2	100 - 80	L2 1/2x2 1/2x3/16	6.33	2.86	94.7 K=1.36	0.9020	-4.83	18.22	0.265 1
Т3	80 - 60	L3x3x3/16	8.00	3.57	96.0 K=1.33	1.0900	-8.51	21.36	0.399 1

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	21 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client	Washoe County	Designed by Hyun D. Kim

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T4	60 - 40	2L3x3x3/16x3/8	10.00	6.81	74.5 K=1.00	2.1800	-11.09	51.46	0.216 1
		2L 'a' > 26.4698 in - 94							•
T5	40 - 20	2L3 1/2x3 1/2x1/4x3/8	12.00	8.18	77.4 K=1.00	3.3800	-15.21	79.90	0.190 1
		2L 'a' > 32.1221 in - 115							•
T6	20 - 0	2L3 1/2x3 1/2x1/4x3/8	14.00	9.55	90.4 K=1.00	3.3800	-16.53	71.19	0.232 1
		2L 'a' > 37.5235 in - 136							•

¹ P_u / ϕP_n controls

Top Girt Design Data (Compression)

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	L2x2x3/16	5.00	2.26	94.4 K=1.37	0.7150	-0.57	14.49	0.039 1
T2	100 - 80	L2 1/2x2 1/2x3/16	5.00	2.24	87.2 K=1.60	0.9020	-3.66	19.58	0.187 1
Т3	80 - 60	L3x3x3/16	7.00	3.18	92.0 K=1.44	1.0900	-6.18	22.18	0.279 1
T4	60 - 40	L3x3x3/16	9.00	4.07	101.0 K=1.23	1.0900	-8.48	20.31	0.418 1
T5	40 - 20	L3 1/2x3 1/2x1/4	11.00	4.99	103.1 K=1.20	1.6900	-13.47	31.28	0.431 1
Т6	20 - 0	2L3 1/2x3 1/2x1/4x3/8	13.00	8.93	84.5 K=1.00	3.3800	-14.99	75.19	0.199 ¹
		2L 'a' > 35.0683 in - 129							•

¹ P_u / ϕP_n controls

Tension Checks

Leg Design Data (Tension)

Section	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio
No.									P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	P2.5x.203	20.00	6.67	84.4	1.7040	9.09	53.68	0.169 1
									✓
T2	100 - 80	P3.5x.226	20.03	6.68	59.9	2.6795	41.96	84.41	0.497^{-1}
									~
T3	80 - 60	P6x.28	20.03	10.02	53.5	5.5813	78.14	175.81	0.444^{-1}

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job		Page
	SLIDE MOUNTAIN	22 of 24
Project		Date
	SLIDE MOUNTAIN	16:35:59 09/15/17
Client		Designed by
	Washoe County	Hyun D. Kim

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T4	60 - 40	P8x.322	20.03	10.02	40.9	8.3993	135.12	264.58	0.511 1
T5	40 - 20	P10x.365	20.03	10.02	32.7	11.9083	201.21	375.11	0.536 1
Т6	20 - 0	P12x.375	20.03	10.02	27.5	14.5790	270.32	459.24	0.589 1

¹ P_u / ϕP_n controls

		Diag	jonal l	Desig	n Dat	a (Ten	sion)		
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	2L3x3x3/16x3/8	7.12	6.54	86.6	1.4241	8.76	61.95	0.141 1
T2	100 - 80	2L 'a' > 37.3552 in - 15 L3x3x1/4	7.53	6.90	92.6	0.9159	10.25	39.84	0.257 1
Т3	80 - 60	2L3x3x1/4x3/8	10.97	10.00	132.9	1.7850	20.68	77.65	0.266 1
T4	60 - 40	2L3x3x1/4x3/8	11.42	10.37	137.7	1.7850	23.13	77.65	0.298 1
T5	40 - 20	2L3x3x3/8x3/8	11.93	10.81	146.0	2.6025	27.49	113.21	0.243 1
Т6	20 - 0	2L3x3x3/8x3/8	12.50	11.32	152.7	2.6025	27.18	113.21	0.240^{-1}

¹ P_u / ϕP_n controls

	Horizontal Design Data (Tension)										
Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u		
	ft		ft	ft		in^2	K	K	ϕP_n		
T1	120 - 100	L2x2x3/16	5.00	2.26	69.4	0.4308	3.07	18.74	0.164 1		
T2	100 - 80	L2 1/2x2 1/2x3/16	6.33	2.86	69.4	0.5535	4.85	24.08	0.201 1		
Т3	80 - 60	L3x3x3/16	8.00	3.57	71.4	0.6769	8.74	29.44	0.297 1		
T4	60 - 40	2L3x3x3/16x3/8	10.00	6.81	60.5	1.3537	11.41	58.89	0.194 ¹		
T5	40 - 20	2L 'a' > 26.4698 in - 94 2L3 1/2x3 1/2x1/4x3/8	12.00	8.18	62.9	2.1600	15.10	93.96	0.161 ¹		

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	23 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	Ratio P _u
	ft		ft	ft		in^2	K	K	ϕP_n
Т6	20 - 0	2L 'a' > 32.1221 in - 115 2L3 1/2x3 1/2x1/4x3/8 2L 'a' > 37.5235 in - 136	14.00	9.55	73.2	2.1600	16.58	93.96	0.176 1

¹ P_u / ϕP_n controls

Top	Girt	Design	Data	(Tension)	
					Ξ

Section No.	Elevation	Size	L	L_u	Kl/r	A	P_u	ϕP_n	$Ratio$ P_u
	ft		ft	ft		in^2	K	K	ϕP_n
T1	120 - 100	L2x2x3/16	5.00	2.26	69.4	0.4308	0.56	18.74	0.030 1
T2	100 - 80	L2 1/2x2 1/2x3/16	5.00	2.24	55.1	0.5535	3.27	24.08	0.136 1
Т3	80 - 60	L3x3x3/16	7.00	3.18	63.9	0.6769	5.94	29.44	0.202 1
T4	60 - 40	L3x3x3/16	9.00	4.07	81.0	0.6769	8.39	29.44	0.285 1
T5	40 - 20	L3 1/2x3 1/2x1/4	11.00	4.99	84.9	1.0800	13.73	46.98	0.292 1
Т6	20 - 0	2L3 1/2x3 1/2x1/4x3/8	13.00	8.93	68.5	2.1600	15.10	93.96	0.161 1
		2L 'a' > 35.0683 in - 129							-

¹ P_u / ϕP_n controls

Section Capacity Table

Section	Elevation	Component	Size	Critical	P	$ \emptyset P_{allow} $	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
T1	120 - 100	Leg	P2.5x.203	3	-11.13	37.27	29.9	Pass
		Diagonal	2L3x3x3/16x3/8	14	-8.84	46.44	19.0 55.9 (b)	Pass
		Horizontal	L2x2x3/16	13	-3.23	14.49	22.3 45.0 (b)	Pass
		Top Girt	L2x2x3/16	5	-0.57	14.49	3.9 8.2 (b)	Pass
T2	100 - 80	Leg	P3.5x.226	33	-48.99	70.22	69.8	Pass
		Diagonal	L3x3x1/4	38	-10.33	16.61	62.2 81.3 (b)	Pass
		Horizontal	L2 1/2x2 1/2x3/16	37	-4.83	18.22	26.5 54.0 (b)	Pass
		Top Girt	L2 1/2x2 1/2x3/16	36	-3.66	19.58	18.7 36.5 (b)	Pass
T3	80 - 60	Leg	P6x.28	63	-92.12	151.83	60.7	Pass
		Diagonal	2L3x3x1/4x3/8	75	-20.85	38.87	53.7 76.8 (b)	Pass

Black & Veatch Corp. 6800 W 115th St. Suite 2292 Overland Park, KS 66211 Phone: (913) 458-8145 FAX: (913) 458-8136

Job	Page
SLIDE MOUNTAIN	24 of 24
Project	Date
SLIDE MOUNTAIN	16:35:59 09/15/17
Client Washoe County	Designed by Hyun D. Kim

Section	Elevation	Component	Size	Critical	P	$ olimits P_{allow} $	%	Pass
No.	ft	Туре		Element	K	K	Capacity	Fail
		Horizontal	L3x3x3/16	73	-8.51	21.36	39.9	Pass
							86.6 (b)	
		Top Girt	L3x3x3/16	65	-6.18	22.18	27.9	Pass
			TO				58.8 (b)	_
T4	60 - 40	Leg	P8x.322	84	-156.91	242.85	64.6	Pass
		Diagonal	2L3x3x1/4x3/8	96	-23.36	36.34	64.3	Pass
		TT - 1 4 - 1	21.2.2.2/16.2/9	0.4	11.00	51.46	85.9 (b)	D
		Horizontal	2L3x3x3/16x3/8	94	-11.09	51.46	21.6	Pass
		T Ci-t	1.222/16	97	0.40	20.21	56.5 (b)	D
		Top Girt	L3x3x3/16	87	-8.48	20.31	41.8 83.1 (b)	Pass
T5	40 - 20	Leg	P10x.365	105	-228.61	355.11	64.4	Pass
13	40 - 20	Diagonal	2L3x3x3/8x3/8	117	-27.86	47.25	59.0	Pass
		Diagonai	2L3X3X3/8X3/8	11/	-27.80	47.23	76.2 (b)	rass
		Horizontal	2L3 1/2x3 1/2x1/4x3/8	115	-15.21	79.90	19.0	Pass
		Homzontar	2L3 1/2X3 1/2X1/4X3/6	113	-13.21	17.50	51.0 (b)	1 433
		Top Girt	L3 1/2x3 1/2x1/4	108	-13.47	31.28	43.1	Pass
		rop Girt	ES 1/2//S 1/2/(1/1	100	13.17	31.20	92.8 (b)	1 435
T6	20 - 0	Leg	P12x.375	126	-302.46	441.85	68.5	Pass
		Diagonal	2L3x3x3/8x3/8	138	-27.59	43.09	64.0	Pass
		C					75.5 (b)	
		Horizontal	2L3 1/2x3 1/2x1/4x3/8	136	-16.53	71.19	23.2	Pass
							56.0 (b)	
		Top Girt	2L3 1/2x3 1/2x1/4x3/8	129	-14.99	75.19	19.9	Pass
							51.1 (b)	
							Summary	
						Leg (T2)	69.8	Pass
						Diagonal	85.9	Pass
						(T4)		
						Horizontal	86.6	Pass
						(T3)		_
						Top Girt	92.8	Pass
						(T5)		_
						Bolt Checks	92.8	Pass
						RATING =	92.8	Pass

 $Program\ Version\ 7.0.5.1\ -\ 2/1/2016\ File: C:/Users/kon71644/Desktop/Telecom/My\ Tasks/2017\ Tasks/Tower\ Modification\ Analysis/Slide\ Mountain/09.15.2017/Slide\ Mountain\ -\ Structural\ Modification\ Analysis.eri$

Anchor Rod Check for Self Supporting Towers

TIA-222-G, Section 4.9.9

Rev 6

Site Data			
BU#:			
Site Name:	Slide Mountain		
App #:			

Anchor Rod Data				
Qty:	6			
Diam:	1.75	in		
Rod Material:	A36			
Strength (Fu):	58	ksi		
Yield (Fy):	36	ksi		

* Rod Circle:	in
* e:	in
* # of Rods	1 or 2

^{*} Only enter rod circle, offset (e) and number of anchor rods at the extreme fiber to consider if eccentric load due to leg reinforcement exist.

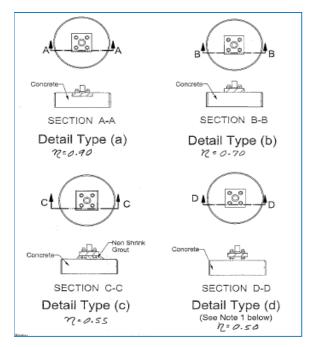


Figure 4-4 of TIA-222-G

Reactions				
Eta Factor, η 0.55 Detail Type				
Uplift, Pu:	304	kips		
Shear, Vu:	39	kips		

ar:	in
$Mu = 0.65*I_{ar}*V_{u}$	ft-kips

Anchor Rod Results:

Max Rod (Cu+ Vu/ή):	62.5	Kips
Design Axial, Φ*Fu*Anet:	88.2	Kips
Anchor Rod Stress Ratio:	70.9%	

If Applicable;

Anchor Rod Results with Bending Considered:

When the clear distance from the top of concrete to the bottom of level nut exceeds 1.0 times the diameter of the anchor rod, the following interaction equation shall also be satisfied (see Figure 4-4 of Rev. G):

$$(V_u/\phi R_{nv})^2 + [(P_u/\phi R_{nt}) + (M_u/\phi R_{nm})]^2 < 1$$

Maximum Acceptable Ratio: 105 %

Governing Stress Ratio: 70.9% Pa

SST Unit Base Foundation

BU # :
Site Name: Slide Mountain
App. Number:

TIA-222 Revision: G Tower Centroid Offset?: Block Foundation?:

Superstructure Analysis	Reaction 8	าร
Global Moment, M:	4243	ft-kips
Global Axial, P:	36	kips
Global Shear, V:	73	kips
Leg Compression, P _{comp} :	339	kips
Leg Comp. Shear, V _{u_comp} :	42	kips
Leg Uplift, P _{uplift} :	304	kips
Leg Uplift. Shear, V u_uplift:	39	kips
Tower Height, H :	120	ft
Base Face Width, BW :	15	ft
BP Dist. Above Fdn, bp _{dist} :	3	in
Anchor Bolt Circle, BC:	16	in

Found	Foundation Analysis Checks				
	Capacity	Demand	Rating	Check	
Lateral (Sliding) (kips)	112.14	73.00	65.1%	Pass	
Bearing Pressure (ksf)	11.25	2.39	21.2%	Pass	
Overturning (kip*ft)	5991.70	4553.25	76.0%	Pass	
Pad Flexure (kip*ft)	6259.65	2311.63	36.9%	Pass	
Pad Shear - 1-way (kips)	1195.53	246.05	20.6%	Pass	
Pad Shear - 2-way (ksi)	0.16	0.03	20.3%	Pass	

Soil Rating: **76.0%**Structural Rating: **36.9%**

Pad Properties				
Depth, D:	3.5	ft		
Pad Width, W:	28.0	ft		
Pad Thickness, T:	4.0	ft		
Pad Rebar Size (Bottom), Sp:	9			
Pad Rebar Quantity (Bottom), mp:	33			
Pad Clear Cover, ccpad:	3	in		

Material Properties			
Rebar Grade, Fy: 60000 psi			
Concrete Compressive Strength, F'c:	3000	psi	
Dry Concrete Density, δ c :	150	pcf	

Soil Properties				
Total Soil Unit Weight, γ:	110	pcf		
Ultimate Gross Bearing, Qult:	15.000	ksf		
Cohesion, Cu :	0.000	ksf		
Friction Angle, $oldsymbol{arphi}$:	0	degrees		
SPT Blow Count, N _{blows} :				
Base Friction, μ :	0.3			
Neglected Depth, N:	1.7	ft		
Foundation Bearing on Rock?	No			

<-- Toggle between Gross and Net

SELF-SUPPORT TOWER REINFORCEMENT DRAWINGS

SITE NAME: SLIDE MOUNTAIN

SITE ADDRESS:
ATOP SLIDE MOUNTAIN,
OFF RT 431, ~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

ATTENTION ALL CONTRACTORS

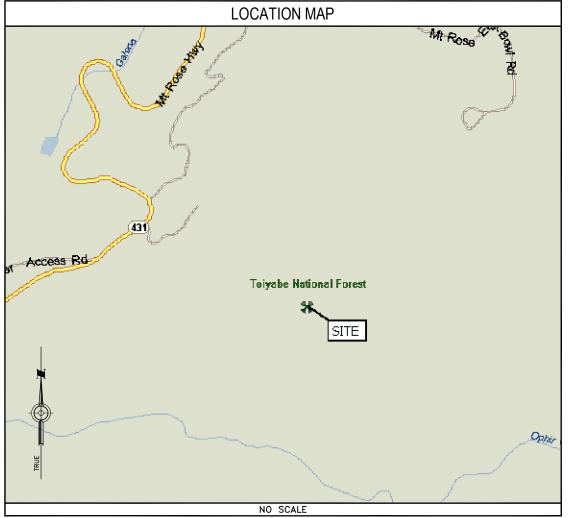
ANYTIME YOU ACCESS A CROWN SITE FOR ANY REASON YOU ARE TO CALL THE CROWN NOC UPON ARRIVAL AND DEPARTURE, DAILY AT 800-788-7011.

CODE COMPLIANCE

THIS REINFORCEMENT DESIGN IS BASED ON THE REQUIREMENTS OF TIA-222-G STRUCTURAL STANDARD FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS, IBC 2012, AND 2012 NORTHERN NEVADA AMENDMENTS USING A 3-SECOND GUST WIND SPEED OF 108 MPH WITH NO ICE, AND 60 MPH UNDER SERVICE LOADS, EXPOSURE CATEGORY C.

TOWER INFORMATION

TOWER MANUFACTURER / DWG#: PAUL J FORD / DWG #00-055-01


TOWER HEIGHT / TYPE: 120 FT SELF-SUPPORT TOWER

TOWER LOCATION: LATITUDE 39° 18′ 15.24″ DATUM: NAD 1983 LONGITUDE -119° 53′ 3.0″

PROJECT CONTACTS

WASHOE COUNTY CONTACT
QUINN KORBULIC
(775) 328-2348
QKORBULIC@WASHOECOUNTY.US
1001 E NINTH ST
RENO, NV 89512

B&V LEAD PROJECT MANAGER GENE ROBINSON (913) 458-6922 ROBINSONGE@BV.COM 6800 W 115TH ST, SUITE 2292 OVERIAND PARK. KS 66211 B&V STRUCTURAL ENGINEER HYUN KIM, P.E. (913) 458–2258 KIMH@BV.COM 6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

DRAWING INDEX					
SHEET NO:	SHEET TITLE				
TM-1	TITLE PAGE				
TM-2	MODIFICATION INSPECTION CHECKLIST				
TM-3	NOTES				
TM-4	TOWER ELEVATION				
TM-5	REINFORCEMENT DETAILS				
TM-6	REINFORCEMENT DETAILS				
TM-7	REINFORCEMENT DETAILS				
TM-8	REINFORCEMENT DETAILS				
TM-9	REINFORCEMENT DETAILS				
TM-10	REINFORCEMENT DETAILS				

DO NOT SCALE DRAWINGS

CONTRACTOR SHALL VERIFY ALL PLANS & EXISTING DIMENSIONS & CONDITIONS ON THE JOB SITE & SHALL IMMEDIATELY NOTIFY THE ENGINEER IN WRITING OF ANY DISCREPANCIES BEFORE PROCEEDING WITH THE WORK OR BE RESPONSIBLE FOR SAME

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO: 196487

DRAWN BY: TYW

CHECKED BY: HK

0	09/13/17	ISSUED FOR CONSTRUCTION
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

SHEET TITLE

TITLE PAGE

SHEET NUMBER

MODIFICATION INSPECTION NOTES

GENERAL

- THE MODIFICATION INSPECTION IS A VISUAL INSPECTION OF TOWER MODIFICATIONS AND A REVIEW OF CONSTRUCTION INSPECTIONS AND OTHER REPORTS TO ENSURE THE INSTALLATION WAS CONSTRUCTED IN ACCORDANCE WITH THE CONTRACT DOCUMENTS, NAMELY THE MODIFICATION DRAWINGS, AS DESIGNED BY THE ENGINEER OF RECORD.
- THE MODIFICATION INSPECTION IS TO CONFIRM INSTALLATION CONFIGURATION AND WORKMANSHIP ONLY AND IS NOT A REVIEW OF THE MODIFICATION ITSELF, NOR DOES THE MODIFICATION INSPECTOR TAKE OWNERSHIP OF THE MODIFICATION DESIGN. OWNERSHIP OF THE STRUCTURAL MODIFICATION DESIGN EFFECTIVENESS AND INTENT RESIDES WITH THE ENGINEER OF RECORD AT
- 3. ALL MI'S SHALL BE CONDUCTED BY A CROWN ENGINEERING SERVICE VENDOR (AESV) THAT IS APPROVED TO PERFORM ELEVATED WORK FOR CROWN. SEE CROWN ENG-BUL-10173, "APPROVED
- TO ENSURE THAT THE REQUIREMENTS OF THE MODIFICATION INSPECTION ARE MET, IT IS VITAL THAT THE GENERAL CONTRACTOR (GC) AND THE MODIFICATION INSPECTOR BEGIN COMMUNICATING AND COORDINATING AS SOON AS PO OR PAYMENT IS RECEIVED. IT IS EXPECTED THAT EACH PARTY WILL BE PROACTIVE IN COMMUNICATION WITH THE OTHER PARTY. CONTACT LISTED ON TITLE SHEET SHALL BE CONTACTED IF SPECIFIC INSPECTOR CONTACT INFORMATION IS NOT
- 5. ALL REQUEST FOR INFORMATION (RFI'S) SHALL BE MADE AVAILABLE TO THE MODIFICATION INSPECTOR BY GC.
- REFER TO CROWN ENG-SOW-10007, "MODIFICATION INSPECTION SOW", FOR FURTHER DETAILS

MODIFICATION INSPECTOR

- THE MODIFICATION INSPECTOR IS REQUIRED TO CONTACT THE GC AS SOON AS RECEIVING A PURCHASE ORDER (PO) OR PAYMENT FOR THE MODIFICATION INSPECTION TO:

 - REVIEW THE REQUIREMENTS OF THE MODIFICATION INSPECTION CHECKLIST.
 WORK WITH GC TO DEVELOP A SCHEDULE TO CONDUCT ON—SITE INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS
 - DISCUSS ANY SITE SPECIFIC INSPECTIONS OR CONCERNS.
- 2. THE MODIFICATION INSPECTOR IS RESPONSIBLE FOR COLLECTING ALL GENERAL CONTRACTOR (GC) INSPECTION AND TEST REPORTS, REVIEWING THE DOCUMENTS FOR ADHERENCE TO THE CONTRACT DOCUMENTS, CONDUCTING THE IN-FIELD INSPECTIONS, AND SUBMITTING THE MODIFICATION INSPECTION REPORT TO CROWN

GENERAL CONTRACTOR

- 1. THE GC IS REQUIRED TO CONTACT THE MODIFICATION INSPECTOR AS SOON AS RECEIVING A PO OR PAYMENT FOR THE MODIFICATION INSTALLATION OR TURNKEY PROJECT TO:

 - REVIEW THE REQUIREMENTS OF THE MODIFICATION INSPECTION CHECKLIST.

 WORK WITH MODIFICATION INSPECTOR TO DEVELOP A SCHEDULE TO CONDUCT ON-SITE MODIFICATION INSPECTIONS, INCLUDING FOUNDATION INSPECTIONS.

 BETTER UNDERSTAND ALL INSPECTION AND TESTING REQUIREMENTS.
- THE GC SHALL PERFORM AND RECORD THE TEST AND INSPECTION RESULTS IN ACCORDANCE WITH THE REQUIREMENTS OF THE MODIFICATION INSPECTION CHECKLIST AND CROWN

RECOMMENDATIONS

- THE FOLLOWING RECOMMENDATIONS AND SUGGESTIONS ARE OFFERED TO ENHANCE THE EFFICIENCY AND EFFECTIVENESS OF DELIVERING A MODIFICATION INSPECTION REPORT
 - * IT IS SUGGESTED THAT THE GC PROVIDE MINIMUM OF 5 BUSINESS DAYS NOTICE, PREFERABLY 10 BUSINESS DAYS, TO THE MODIFICATION INSPECTOR AS TO WHEN THE SITE WILL BE READY FOR THE MODIFICATION INSPECTION TO BE CONDUCTED.

 * THE GC AND MODIFICATION INSPECTOR COORDINATE CLOSELY THROUGHOUT THE ENTIRE
 - PROJECT

 - * WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MODIFICATION INSPECTOR ON-SITE SIMULTANEOUSLY FOR ANY GUY WIRE TENSIONING OR RE-TENSIONING OPERATIONS.

 * IT MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE
 - TO MAY BE BENEFICIAL TO INSTALL ALL TOWER MODIFICATIONS PRIOR TO CONDUCTING THE FOUNDATION INSPECTIONS TO ALLOW FOUNDATION AND MODIFICATION INSPECTION(S) TO COMMENCE IN ONE SITE VISIT.

 WHEN POSSIBLE, IT IS PREFERRED TO HAVE THE GC AND MODIFICATION INSPECTION ON—SITE DURING THE MODIFICATION INSPECTION. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MODIFICATION INSPECTION. THEREFORE, THE GC MAY CHOOSE TO COORDINATE THE MODIFICATION INSPECTION. CAREFULLY TO ENSURE ALL CONSTRUCTION FACILITIES ARE AT THEIR DISPOSAL WHEN THE MODIFICATION INSPECTION. THEIR DISPOSAL WHEN THE MODIFICATION INSPECTOR IS ON SITE.

CANCELLATION OR DELAY IN SCHEDULED MODIFICATION INSPECTION

1. IF THE GC AND MODIFICATION INSPECTOR AGREE TO A DATE ON WHICH THE MODIFICATION INSPECTION WILL BE CONDUCTED, AND EITHER PARTY CANCELS OR DELAYS, THE TOWER OWNER SHALL NOT BE RESPONSIBLE FOR COSTS, FEES, LOSS OF DEPOSITS AND/OR OTHER PENALTIES RELATED TO THE CANCELLATION OR DELAY INCURRED BY EITHER PARTY FOR ANY TIME (E.G. TRAVEL AND LODGING, COSTS OF KEEPING EQUIPMENT ON—SITE, ETC). EXCEPTIONS MAY BE MADE IN THE EVENT THAT THE DELAY/CANCELLATION IS CAUSED BY WEATHER OR OTHER CONDITIONS THAT MAY COMPROMISE THE SAFETY OF THE PARTIES INVOLVED.

CORRECTION OF FAILING MODIFICATION INSPECTION

- 1. IF THE MODIFICATION INSTALLATION SHOULD FAIL THE MODIFICATION INSPECTION ("FAILED MODIFICATION INSPECTION"), THE GC SHALL WORK WITH MODIFICATION INSPECTOR TO COORDINATE A REMEDIATION PLAN IN ONE OF TWO WAYS:
 - CORRECT FAILING ISSUES TO COMPLY WITH THE SPECIFICATIONS CONTAINED IN THE ORIGINAL CONTRACT DOCUMENTS AND COORDINATE A SUPPLEMENTAL MODIFICATION INSPECTION.
 - * OR, WITH TOWER OWNER'S APPROVAL, THE GC MAY WORK WITH ENGINEER OF RECORD TO RE-ANALYZE THE MODIFICATION/REINFORCEMENT USING THE AS-BUILT CONDITION.

VERIFICATION INSPECTIONS

- TOWER OWNER RESERVES THE RIGHT TO CONDUCT A VERIFICATION INSPECTION TO VERIFY THE ACCURACY AND COMPLETENESS OF PREVIOUSLY COMPLETED MODIFICATION INSPECTION(S) ON TOWER MODIFICATION PROJECTS.
- ALL VERIFICATION INSPECTIONS SHALL BE HELD TO THE SAME SPECIFICATIONS AND REQUIREMENTS IN THE CONTRACT DOCUMENTS AND IN ACCORDANCE WITH CROWN
- VERIFICATION INSPECTION MAY BE CONDUCTED BY AN INDEPENDENT FIRM AFTER A MODIFICATION PROJECT IS COMPLETED, AS MARKED BY THE DATE OF AN ACCEPTED "PASSING MODIFICATION INSPECTION" OR "PASS AS NOTED MODIFICATION INSPECTION" REPORT FOR THE ORIGINAL

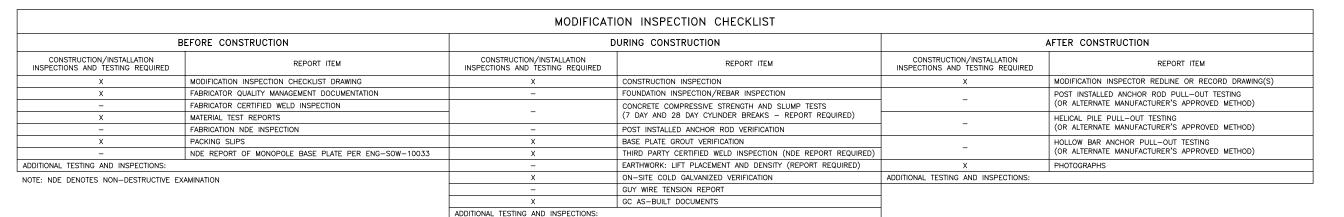
REQUIRED PHOTOS

- BETWEEN THE GC AND THE MODIFICATION INSPECTOR, THE FOLLOWING PHOTOGRAPHS ARE TO BE TAKEN AND INCLUDED IN THE MODIFICATION INSPECTION REPORT:
 - * PRE-CONSTRUCTION GENERAL SITE CONDITIONS.
 - * PHOTOGRAPHS DURING THE REINFORCEMENT MODIFICATION CONSTRUCTION/ERECTION AND
 - INSPECTION.
 - ** RAW MATERIALS

 ** PHOTOS OF CRITICAL DETAILS
 - ** FOUNDATION MODIFICATIONS
 - ** REBAR PLACEMENT

 ** FOUNDATION DEPTH VERIFICATION
 - ** SOIL COMPACTION PROCESS
 - ** COLD GALVANIZED VERIFICATION

 - GUY WIRE GROUNDING SYSTEM VERIFICATION
 POST INSTALL ANCHOR DRILL HOLE DIAMETER AND DEPTH
 - WFLD PREPARATION
 - WELD INSTALLATION PRIOR TO SURFACE COATING BOLT INSTALLATION AND TORQUE


 - FINAL INSTALLED CONDITION ** SURFACE COATING REPAIR
 - * POST CONSTRUCTION PHOTOGRAPHS.

 ** FINAL IN FIELD CONDITION

 - * ANY OTHER PHOTOS DEEMED RELEVANT TO SHOW COMPLETE DETAILS OF MODIFICATION.

THIS IS NOT A COMPLETE LIST OF REQUIRED PHOTOS PLEASE REFER TO CROWN

PHOTOS OF ABOVE GROUND MODIFICATIONS TAKEN FROM GROUND LEVEL SHALL BE CONSIDERED INADEQUATE.

NOTE: X DENOTES A DOCUMENT REQUIRED FOR THE MODIFICATION INSPECTION REPORT

- DENOTES A DOCUMENT THAT IS NOT REQUIRED FOR THE MODIFICATION INSPECTION REPORT

PREPARED FOR:

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO:	196487
DRAWN BY:	TYW
CHECKED BY:	нк

$\overline{}$		
0	09/13/17	ISSUED FOR CONSTRUCTION
REV	DATE	DESCRIPTION
		CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTIO OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN ATOP SLIDE MOUNTAIN, OFF RT 431, \sim 6 MILES WEST OF NEW WASHOE CITY, NV 89704 WASHOE COUNTY, USA

SHEET TITLE

MODIFICATION INSPECTION CHECKLIST

SHEET NUMBER

GENERAL NOTES

- ALL WORK PRESENTED ON THESE DRAWINGS MUST BE COMPLETED BY THE CONTRACTOR UNLESS NOTED OTHERWISE. THE CONTRACTOR MUST BE EXPERIENCED IN THE PERFORMANCE OF WORK SIMILAR TO THAT DESCRIBED HEREIN. BY ACCEPTANCE OF THIS ASSIGNMENT, THE CONTRACTOR IS ATTESTING THAT HE DOES HAVE SUFFICIENT EXPERIENCE AND ABILITY, THAT HE IS KNOWLEDGEABLE OF THE WORK TO BE PERFORMED, THAT HE IS PROPERLY LICENSED, AND THAT HE IS PROPERLY REGISTERED TO DO THIS WORK IN THE STATE AND/OR COUNTY IN WHICH IT IS TO BE PERFORMED.
- 2. THE GENERAL NOTES AND TYPICAL DETAILS ARE APPLICABLE TO ALL PARTS OF THE STRUCTURE AND SHALL BE READ IN CONJUNCTION WITH THE STRUCTURAL DRAWINGS AND PROJECT SPECIFICATIONS
- THE CONTRACTOR IS RESPONSIBLE FOR OBTAINING APPROVALS FROM ALL AUTHORITIES HAVING JURISDICTION FOR THIS PROJECT AND SHALL NOTIFY THE APPLICABLE JURISDICTIONAL (STATE, COUNTY, OR CITY) ENGINEER 24 HOURS PRIOR TO THE BEGINNING OF CONSTRUCTION.
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR ABIDING BY ALL CONDITIONS AND REQUIREMENTS OF THE PERMITS.
- 5. ERECT GUARDS AND BARRIERS PER APPLICABLE LABOR AND CONSTRUCTION SAFETY REGULATIONS.
- THE CONTRACTOR SHALL FIELD VERIFY ALL EXISTING CONDITIONS, POSSIBLE INTERFERENCES, AND DIMENSIONS BEFORE PROCEEDING WITH THE WORK. REPORT ANY AND ALL DISCREPANCIES TO THE ENGINEER OF RECORD (EOR) AND FIELD PERSONNEL IMMEDIATELY. ANY AND ALL FIELD CHANGES SHALL BE APPROVED AND DOCUMENTED BY THE EOR PRIOR TO FIELD IMPLEMENTATION.
- ALL MATERIALS AND WORKMANSHIP SHALL BE WARRANTED FOR TWO (2) YEARS FROM THE DATE OF COMPLETED CONSTRUCTION.
- USE ONLY THE LATEST ISSUES OF ANY APPLICABLE CODES, STANDARDS, OR REGULATIONS MENTIONED IN THE FOLLOWING NOTES AND SPECIFICATIONS, UNO.
- ALL WORKMANSHIP SHALL BE IN ACCORD REFERENCED IN THE APPLICABLE CODE. WORKMANSHIP SHALL BE IN ACCORDANCE WITH ANSI, ASTM, ACI, TIA, AND AISC STANDARDS AS
- 10. STRUCTURAL ELEMENTS SHOWN ON THESE DRAWINGS ARE DESIGNED IN ACCORDANCE WITH APPLICABLE BUILDING CODES/STANDARDS. ALL CONSTRUCTION, EXCEPT WHERE NOTED OTHERWISE, SHALL COMPLY WITH THOSE CODES/STANDARDS.
- 11. ALL MATERIALS AND EQUIPMENT FURNISHED SHALL BE NEW AND OF GOOD QUALITY, FREE FROM FAULTS AND DEFECTS, AND IN CONFORMANCE WITH THE DRAWINGS. ANY AND ALL SUBSTITUTIONS MUST BE DULY APPROVED AND AUTHORIZED IN WRITING BY THE OWNER AND EQUIPMENT ASSISTANCE OF RECORD PRIOR TO FABRICATION AND INSTALLATION. THE CONTRACTOR SHALL FURNISH SATISFACTORY EVIDENCE AS TO THE KIND AND QUALITY OF THE MATERIALS AND EQUIPMENT BEING SUBSTITUTED.
- 12. ALL MANUFACTURER'S HARDWARE ASSEMBLY INSTRUCTIONS SHALL BE FOLLOWED EXACTLY AND SHALL
- 13. THE CONTRACTOR SHALL BE RESPONSIBLE FOR INITIATING, MAINTAINING, AND SUPERVISING ALL SAFETY PRECAUTIONS AND PROGRAMS IN CONNECTION WITH THE WORK. THE CONTRACTOR IS ALSO RESPONSIBLE FOR ENSURING THAT ALL CONSTRUCTION PROCEDURES MEET THE REQUIREMENTS OF OSHA, THE OWNER, AND ALL OTHER APPLICABLE LOCAL, STATE, AND FEDERAL SAFETY REGULATIONS. CONSTRUCTION SHALL BE PERFORMED ONLY IN "GOOD WEATHER". "GOOD WEATHER" MEANS LITTLE OR NO WIND AND RAIN AND MINIMUM TEMPERATURE OF 50 DEGREES F. CONTACT ENGINEER FOR ADDITIONAL INSTRUCTIONS IF "GOOD WEATHER" CANNOT BE ACHIEVED.
- 14. ACCESS TO THE PROPOSED WORK SITE MAY BE RESTRICTED. THE CONTRACTOR SHALL COORDINATE INTENDED CONSTRUCTION ACTIVITY, INCLUDING WORK SCHEDULE AND MATERIAL ACCESS, WITH THE RESIDENT LEASING AGENT
- 15. IT SHALL BE THE RESPONSIBILITY OF THE CONTRACTOR TO SAFEGUARD ALL EXISTING STRUCTURES OR BURIED SERVICES AFFECTED BY THIS CONSTRUCTION. CONTRACTOR IS ALSO RESPONSIBLE FOR TEMPORARILY RELOCATING ANY LINES OR STRUTS AS NECESSARY TO COMPLETE THE REQUIRED
- 16. STRUCTURAL DESIGN IS FOR THE COMPLETE CONDITION ONLY. THE CONTRACTOR MUST BE CONIZANT THAT THE REMOVAL OF ANY STRUCTURAL COMPONENT OF AN EXISTING TOWER HAS THE POTENTIAL TO CAUSE THE PARTIAL OR COMPLETE COLLAPSE OF THE STRUCTURE. ALL NECESSARY PRECAUTIONS MUST BE TAKEN TO ENSURE STRUCTURAL INTEGRITY, INCLUDING, BUT NOT LIMITED TO, ENGINEERING ASSESSMENT OF CONSTRUCTION STRESSES WITH INSTALLATION MAXIMUM WIND SPEED
- 18. FOR THIS ANALYSIS AND MODIFICATION, THE TOWER HAS BEEN ASSUMED TO BE IN GOOD CONDITION WITHOUT ANY DEFECTS. IF THE CONTRACTOR DISCOVERS ANY INDICATION OF AN EXISTING STRUCTURAL DEFECT, CONTACT THE ENGINEER OF RECORD IMMEDIATELY.
- 19. MODIFICATION WORK SHALL BE COMPLETED IN CALM WIND CONDITIONS / OR APPROPRIATE WIND SPEED FOR THE TYPE OF MODIFICATION WORK TO BE INSTALLED.
- THE CLIMBING FACILITIES, SAFETY CLIMB AND ALL PARTS THEREOF SHALL NOT BE IMPEDED, MODIFIED OR ALTERED WITHOUT THE EXPRESS APPROVAL OF THE ENGINEER OF RECORD.
- 21. CONTRACTOR TO VERIFY REQUIRED STEEL PLATE LENGTHS FROM BOTTOM OF SECTION TO BOTTOM OF NEXT SECTION.
- 22. THESE DRAWINGS DO NOT INDICATE THE METHOD OF CONSTRUCTION. THE CONTRACTOR SHALL SUPERVISE AND DIRECT THE WORK AND SHALL BE SOLELY RESPONSIBLE FOR ALL CONSTRUCTION METHODS, MEANS, TECHNIQUES, SEQUENCES AND PROCEDURES.
- 23. ALL CHANGES/ALTERNATES/REVISIONS TO THESE DRAWINGS SHALL BE DOCUMENTED BY REQUEST FOR INFORMATION (RFI) FORM APPROVED BY ENGINEER OF RECORD. FINAL WORK AUTHORIZATION AND ALL CHANGE ORDERS SHALL BE APPROVED BY CLIENT AND/OR CLIENT REPRESENTATIVE PRIOR TO PROCEEDING WITH ANY WORK THAT DEVIATES FROM THE ORIGINAL DESIGN, SCOPE, PRICE AND/OR SCHEDULE.
- 24. ENGINEERING CONSULTING SERVICES PROVIDED TO THE GENERAL CONTRACTOR BY THE ENGINEER OF RECORD (EOR) REQUIRES AN ADDITIONAL \$900.00 CONSULTING FEE. THE GENERAL CONTRACTOR IS RESPONSIBLE FOR PROVIDING THIS COMPENSATION DIRECTLY TO THE EOR AS AS "ONE-TIME" FEE ENCOMPASSING ALL CONSTRUCTION ADMINISTRATION ITEMS (CURSORY FABRICATION DRAWING REVIEWS, REI'S, MODIFICATION INSPECTION CLOSFOUT REVIEW AND APPROVALS) FOR THE STRUCTURAL DESIGN DRAWINGS (SDD). BLACK & VEATCH RESERVES THE RIGHT TO INCREASE THIS FEE IF FIELD ISSUES ARE A RESULT OF CONTRACTOR ERROR. BLACK & VEATCH ALSO RESERVES THE RIGHT TO CEASE CONSTRUCTION ADMINISTRATION CONSULTATION AS A RESULT OF NON-PAYMENT/NON-COMPLIANCE BY THE GENERAL CONTRACTOR.

- 25. ALL CONSTRUCTION MEANS AND METHODS; INCLUDING BUT NOT LIMITED TO, ERECTION PLANS, RIGGING PLANS, CLIMBING PLANS, AND RESCUE PLANS SHALL BE THE RESPONSIBILITY OF THE GENERAL CONTRACTOR RESPONSIBLE FOR THE EXECUTION OF THE WORK CONTAINED HEREIN AND SHALL MEET ANSI/ASSE A10.48 (LATEST EDITION); FEDERAL, STATE, AND LOCAL REGULATIONS; AND ANY APPLICABLE INDUSTRY CONSENSUS STANDARDS RELATED TO THE CONSTRUCTION ACTIVITIES BEING PERFORMED. ALL RIGGING PLANS SHALL ADHERE TO ANSI/ASSE A10.48 (LATEST EDITION) AND CROWN STANDARD CED-STD-10253 INCLUDING THE REQUIRED INVOLVEMENT OF A QUALIFIED ENGINEER FOR CLASS IV CONSTRUCTION TO CERTIFY THE SUPPORTING STRUCTURE(S) IN
- 26. IN THE EVENT OF AN EMERGENCY, CONTRACTOR SHALL CONTACT BLACK & VEATCH AND AT&T PERSONNEL TO REPORT ANY EVENT OR EMERGENCY INCIDENT AT ANY TOWER OWNER SITE PER THE CONTACT INFORMATION PROVIDED ON SHEET TM-1.
- 27. ANY WORK PERFORMED WITHOUT A PREFABRICATION MAPPING IS DONE AT THE RISK OF THE GC

STRUCTURAL STEEL NOTES

- DESIGN, FABRICATION, ERECTION, ALTERATION AND MAINTENANCE SHALL CONFORM TO THE
- FOLLOWING, UNLESS NOTED OTHERWISE (UNO).

 A. TIA—222: STRUCTURAL STANDARD FOR ANTENNA SUPPORTING STRUCTURES AND ANTENNAS
- . TIA-1019-A: INSTALLATION, ALTERATION, AND MAINTENANCE OF ANTENNA SUPPORTING STRUCTURES AND ANTENNAS
- C. AISC: MANUAL OF STEEL CONSTRUCTION
- 2. ALL STRUCTURAL ELEMENTS SHALL CONFORM TO THE FOLLOWING REQUIREMENTS, UNO. A. STRUCTURAL STEEL.
 - 1. LEG MODIFICATION MATERIAL (ROUND LEGS), ASTM A1085 GRADE 50 (Fy = 50 KSI). CONTRACTOR MAY SUBSTITUTE WITH ASTM A500 GRADE B (FY = 46 KSI MIN) IF A1085 IS NOT AVAILABLE UPON REVIEW AND APPROVAL OF FOR.
 - 2. LEG MODIFICATION MATERIAL (ANGLE/BENT PLATE LEGS), ASTM A572 GRADE 50 OR A529 GRADE 50.
 - 3. BRACING MODIFICATION MATERIAL, ASTM A572 GRADE 50 OR A529 GRADE 50. B. ALL BOLTS, ASTM A325-N TYPE 1 GALVANIZED HIGH STRENGTH BOLTS.

 - ALL NUTS, ASTM A563 CARBON AND ALLOY STEEL NUTS.
- D. ALL WASHERS ASTM F436 HARDENED STEEL WASHERS
- ALL U-BOLTS, FOR LEG MODIFICATION MATERIAL, ASTM A193 GRADE B7. FOR ALL OTHERS, ASTM A36/A307, SEA 429 GRADE 2.
- 3. ALL HOLES SHALL BE CUT WITH A GRINDER OR DRILLED. HOLES SHALL NOT BE FLAME CUT THRU STEEL UNLESS APPROVED BY THE ENGINEER OF RECORD.
- 4. ALL FASTENERS SHALL NOT BE REUSED.
- 5. A NUT LOCKING DEVICE SHALL BE INSTALLED ON ALL PROPOSED AND/OR REPLACED ASTM A325
- 6. ALL PROPOSED AND/OR REPLACED BOLTS SHALL BE OF SUFFICIENT LENGTH SUCH THAT THE END OF THE BOLT BE AT LEAST FLUSH WITH THE FACE OF THE NUT. IT IS NOT PERMITTED FOR THE BOLT END TO BE BELOW THE FACE OF THE NUT AFTER TIGHTENING IS COMPLETED.
- 7. HOT-DIP GALVANIZE ALL ITEMS, UNO. GALVANIZE PER ASTM A123, ASTM A153/A153M OR ASTM A653 G90, AS APPLICABLE.
- AFTER FINAL INSPECTION, ALL EXPOSED STRUCTURAL STEEL AS THE RESULT OF THIS SCOPE OF WORK INCLUDING WELDS, FIELD DRILLED HOLES, AND SHAFT INTERIORS (WHERE ACCESSIBLE), SHALL BE CLEANED AND COLD GALVANIZING APPLIED BY BRUSH. PHOTO DOCUMENTATION IS REQUIRED TO BE SUBMITTED TO THE MI INSPECTOR.
- ASTM A490 BOLTS SHALL NOT BE MECHANICALLY OR HOT-DIP GALVANIZED. ASTM A490 BOLTS SHALL BE COATED WITH TWO (2) ASTM F1136 GRADE 3 COATINGS, SUCH AS "DACROMET", "SHERWIN-WILLIAMS ZINC CLAD 5", OR ENGINEER APPROVED EQUIVALENT. EACH COATING SHALL BE 2 MILS MINIMUM AND 3 MILS MAXIMUM THICKNESS.
- 10. ONLY ONE BRACING MEMBER SHALL BE REMOVED AND REPLACED AT A TIME FOR ALL EXISTING
- 11. WHEN REMOVING AND INSTALLING NEW BOLTS ONLY ONE BOLT SHALL BE REMOVED AND REPLACED

BOLT-TIGHTENING PROCDURE

- 1. TIGHTEN CONNECTION BOLTS BY AISC "TURN OF THE NUT" METHOD. USING THE CHART BELOW. BOLT LENGTHS UP TO AND INCLUDING FOUR DIAMETER:
 - 3/8" BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH +1/3 TURN BEYOND SNUG TIGHT 1/2" BOLTS UP TO AND INCLUDING 3.5 INCH LENGTH +1/3 TURN BEYOND SNUG TIGHT 5/8" BOLTS UP TO AND INCLUDING 4.0 INCH LENGTH +1/3 TURN BEYOND SNUG TIGHT

BOLT LENGTHS OVER FOUR DIAMETER BUT NOT EXCEEDING FIGHT DIAMETER: 3/8" BOLTS 4.25 TO 6.0 INCH LENGTH +1/2 TURN BEYOND SNUG TIGHT 1/2" BOLTS 3.75 TO 7.0 INCH LENGTH +1/2 TURN BEYOND SNUG TIGHT 5/8" BOLTS 4.25 TO 8.0 INCH LENGTH +1/2 TURN BEYOND SNUG TIGH

2. CONNECTION BOLTS SUBJECT TO DIRECT TENSION SHALL BE INSTALLED AND TIGHTENED AS PER SECTION 8(d)(1) OF THE AISC SPECIFICATION FOR STRUCTURAL JOINTS USING A325 OR A490 BOLTS. LOCATED IN THE AISC MANUAL OF STEEL CONSTRUCTION. THE INSTALLATION PROCEDURE IS PARAPHRASED AS FOLLOWS.

8(d)(1) TURN-OF-THE-NUT TIGHTENING METHOD BOLTS SHALL BE INSTALLED IN ALL HOLES OF THE CONNECTION AND BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8(c). UNTIL ALL THE BOLTS ARE SIMULTANEOUSLY SNUG TIGHT AND THE CONNECTION IS FULLY COMPACTED. FOLLOWING THIS INITIAL OPERATION ALL BOLTS IN THE CONNECTION SHALL BE TIGHTENED FURTHER BY THE APPLICABLE AMOUNT OF ROTATION SPECIFIED ABOVE DURING THE TIGHTENING OPERATION THERE SHALL BE NO ROTATION OF THE PART NOT FURNED BY THE WRENCH. TIGHTENING SHALL PROGRESS SYSTEMATICALLY.

- 3. FASTENERS SHALL BE INSTALLED IN PROPERLY ALIGNED HOLES AND TIGHTENED BY ONE OF THE METHODS DESCRIBED IN SUBSECTION 8(d)(1) THROUGH 8(d)(4).
- 4. ALL OTHER BOLTED CONNECTIONS SHALL BE BROUGHT TO A SNUG TIGHT CONDITION AS DEFINED IN SECTION 8(c) OF THE SPECIFICATION.

WELDING NOTES

- 1. ALL WELDING SHALL BE IN ACCORDANCE WITH THE AWS D1.1/D1.1M, "STRUCTURAL WELDING CODE-STEEL".
- 2. ALL WELDING SHALL BE PERFORMED BY AWS CERTIFIED WELDERS.
- ALL ARC WELDING ON AT&T STRUCTURES SHALL BE DONE IN ACCORDANCE WITH AWS D1.1 (LATEST EDITION). THIS SHALL INCLUDE A CERTIFIED WELDING INSPECTOR (CW) FOR ACCEPTANCE OR REJECTION OF ALL WELDING OPERATIONS, PRE-DURING-POST, USING THE ACCEPTANCE CRITERIA OF AWS D1.1. THE CWI SHALL WORK WITH THE GC ON THE LEVEL OF INTERACTION NEEDED TO CONDUCT THE WELDING INSPECTION. THE CERTIFIED WELDING INSPECTION IS THE RESPONSIBILITY OF
- WELDING WILL CONFORM TO AWS D1.1 WELDING CODE, USING E70XX ELECTRODES
- SURFACES TO BE WELDED SHALL BE FREE FROM SCALE, SLAG, RUST, MOISTURE, GREASE OR ANY OTHER FOREIGN MATERIAL THAT WOULD PREVENT PROPER WELDING. GRIND THE SURFACE ADJACENT TO THE WELD FOR A DISTANCE OF 2" MINIMUM ALL AROUND. ENSURE BOTH AREAS ARE 100% FREE
- 6. REPAIR THE GALVANIZED COATING, ALL AREAS AFFECTED BY THE FIELD DRILLING, FIFLD GRINDING REPAIR THE GALVANIZED COATING. ALL AREAS AFFECTED BY THE FIELD WILLING, FIELD GRINDLE MAND FIELD WELDING, SHALL BE REPAIRED. PRODUCTS TO BE APPLIED IN STRICT ACCORDANCE WITH MANUFACTURER'S RECOMMENDATIONS. AREAS THAT HAVE BEEN TOUCHED UP SHOULD BE INSPECTED AS PART OF THE ROUTINE MAINTENANCE OF THE STRUCTURE. NO SPRAY PAINT IS ALLOWED. AFTER ZINC—RICH PAINT IS DRY, OVERCOAT WITH OWNER'S PAINT SPECIFICATIONS, APPLIED IN STRICT ACCORDANCE WITH THE MANUFACTURER'S RECOMMENDATIONS.
- DO NOT WELD IF THE TEMPERATURE OF THE STEEL IN THE VICINITY OF THE WELD AREA IS BELOW O'F. WHEN THE TEMPERATURE IS BETWEEN O'F AND 32'F, PREHEAT AND MAINTAIN THE STEEL IN THE VICINITY OF THE WELD AREA AT 70'F DURING THE WELDING PROCESS.
- 8. DO NOT WELD ON WET OR FROST-COVERED SURFACES & PROVIDE ADEQUATE PROTECTION FROM
- FULL PENETRATION WELDS IN THE VICINITY OF THE BASE OF THE TOWER ARE REQUIRED TO BE 100% NDE INSPECTED BY UT IN ACCORDANCE WITH AWS D1.1 (MONOPOLE TOWER ONLY).
- 10. PARTIAL PENETRATION AND FILLET WELDS IN THE VICINITY OF THE BASE OF THE TOWER ARE REQUIRED TO BE 50% NDE INSPECTED BY MP IN ACCORDANCE WITH AWS D1.1 (MONOPOLE TOWER
- 11. MOVE ALL COAX AND OTHER FLAMMABLE MATERIALS FROM ANY AREA THAT MAY BE HEATED DURING
- 12. CONTRACTOR SHALL MAKE PROPER PRECAUTIONS AND PROCEDURES TO PROTECT THE STRUCTURE FROM CATCHING FIRE DURING ALL WELDING OPERATIONS. THE FOLLOWING FIRE SAFETY PREVENTION PROTOCOL IS THE MINIMUM REQUIREMENTS DURING WELDING OPERATIONS.
- 500 GALLON WATER TANK WITH PUMP TO BE ON SITE AT ALL TIMES.
- 2 FIRE EXTINGUISHERS ON SITE AT ALL TIMES
- 2 MAN FIRE WATCH ON ANY ADJACENT STRUCTURES, FIELDS AND POLE.
- INTERMITTENT COOLING OF WELDED SURFACE TO REDUCE HEAT IN STRUCTURE.

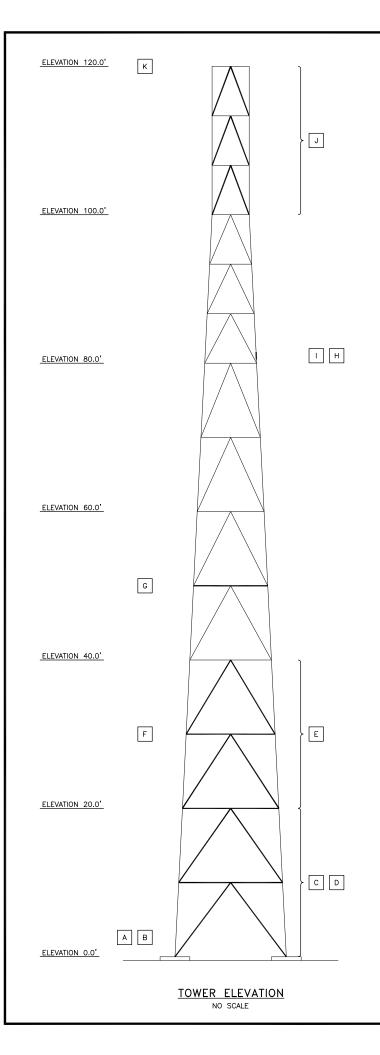
6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO 196487 DRAWN BY TYW CHECKED BY

_			
()	09/13/17	ISSUED FOR CONSTRUCTION
RE	V	DATE	DESCRIPTION
_	CERTIFICATION OF THE PERSON OF		

IT IS A VIOLATION OF LAW FOR ANY PERSON UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN ATOP SLIDE MOUNTAIN, OFF RT 431, \sim 6 MILES WEST OF NEW WASHOE CITY, NV 89704 WASHOE COUNTY, USA


SHEET TITLE

NOTES

SHEET NUMBER

TM-3

DETAIL DRAWINGS SHALL GOVERN OVER ANY VARIANCE FROM THIS SHEET

TOWER MODIFICATION SCHEDULE				
CALLOUT	FROM (FT)	TO (FT)	MODIFICATION	REFERENCE SHEET
А	0.0		INSTALL (4) NEW STIFFENER PLATES TO TOWER LEG BASE PLATE (TOTAL OF 12)	TM-5 & TM-6
В	0	.0	REMOVE AND REPLACE BASE PLATE GROUT	TM-6
С	0.0	20.0	REMOVE AND REPLACE EXISTING DOUBLE ANGLE 2L3x3x1/4 DIAGONAL MEMBERS WITH NEW DOUBLE ANGLE 2L3x3x3/8 DIAGONAL MEMBERS	TM-5
D	0.0	20.0	INSTALL ADDITIONAL ∠3 1/2x3 1/2x1/4 HORIZONTAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLE TO DOUBLE ANGLE 2∠3 1/2x3 1/2x1/4 HORIZONTAL MEMBERS	TM-5
E	20.0	40.0	REMOVE AND REPLACE EXISTING DOUBLE ANGLE 2L3x3x1/4 DIAGONAL MEMBERS WITH NEW DOUBLE ANGLE 2L3x3x3/8 DIAGONAL MEMBERS	TM-7
F	30.0		INSTALL ADDITIONAL ∠3 1/2x3 1/2x1/4 HORIZONTAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLE TO DOUBLE ANGLE 2∠3 1/2x3 1/2x1/4 HORIZONTAL MEMBERS	TM-7
G	50.0		INSTALL ADDITIONAL \(\alpha\).3x3\(\alpha\)16 HORIZONTAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLE TO DOUBLE ANGLE \(2\alpha\)3x3\(\alpha\)3/16 HORIZONTAL MEMBERS	TM-8
Н	80.0±		INSTALL (3) NEW STIFFENER PLATES TO TOWER LEG FLANGE PLATE (TOTAL OF 9)	TM-9
	80.5	81.5	INSTALL NEW HALF PIPE HSS4.5x0.237 (ASTM 1085) TO CRACKED TOWER LEG (OD = 4.5" & THICKNESS = 0.237")	TM-9
J	100.0	120.0	INSTALL ADDITIONAL ∠3x3x3/16 DIAGONAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLE TO DOUBLE ANGLE 2∠3x3x3/16 DIAGONAL MEMBERS	TM-10
К	120.0±		REPAIR BROKEN OFF TOWER LEG	TM-10
L	0.0	120.0	WIRE BRUSH AND APPLY TWO COATS OF COLD GALVANIZING COMPOUND TO ALL SIGNS OF CORROSION AND SURFACE OF WELDING	-

PRIOR
INSTALLA
FIELD V
QUANTIT
QUANTITIE
PURPOSES
USE

PRIOR TO FABRICATION AND INSTALLATION, CONTRACTOR SHALL FIELD VERIFY ALL LENGTH AND QUANTITIES GIVEN. LENGTHS AND QUANTITIES GIVEN ARE FOR QUOTING PURPOSES ONLY, AND SHALL NOT BE USED FOR FABRICATION.

PROJECT NO: 196487

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

DRAWN BY: TYW
CHECKED BY: HK

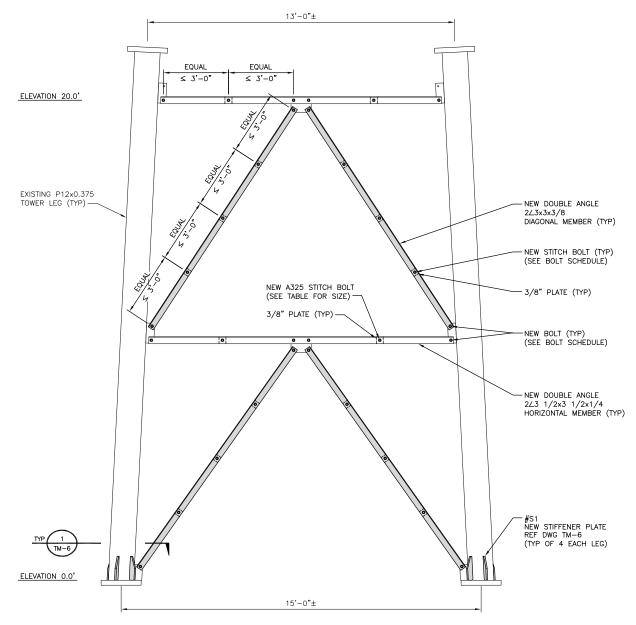
0	09/13/17	ISSUED FOR CONSTRUCTION
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

SHEET TITLE

TOWER ELEVATION


SHEET NUMBER

TM-4

LEG C
(3) 1/2" HELIAX (1) 1 1/4" ELLIPTICAL (1) 2" ELLIPTICAL (1) 1 1/4" ELLIPTICAL
(1) 2" ELLIPTICAL 2' WAVEGUDE LADDER (1) 7/8" HELIAX (1) 7/8" ELLIPTICAL (1) 2" ELLIPTICAL
LEG B CLIMBING LADDER

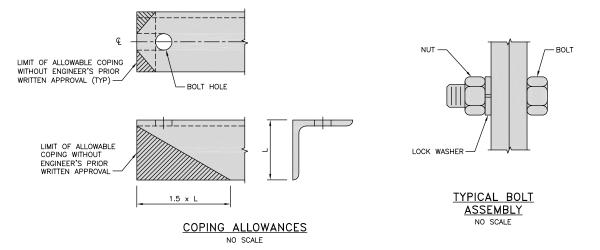
COAX FEEDLINE PLAN
NO SCALE

EXISTING FEEDLINE PLAN SHOWN ON THIS DRAWING IS BASED ON CURRENT BEST KNOWLEDGE OF THE EXISTING CONDITION. IF THE EXISTING FEEDLINE LAYOUT IS NOT AS SHOWN ON THIS DRAWING CONTRACTOR SHALL NOTIFY ENGINEER.

ELEVATION NO SCALE

BILL OF MATERIALS — DIAGONAL						
ELEVATION QUANTITY OF ANGLE SIZE ANGLE LENG						
0' - 20.0'	24	∠3x3x3/8	12'-6"±			

NOTE: ANGLE LENGTHS SHALL BE FIELD VERIFIED.

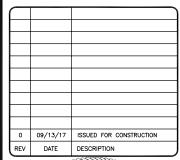

BILL OF MATERIALS — HORIZONTAL						
ELEVATION QUANTITY OF ANGLE SIZE ANGLE LENG						
0' - 20.0' 6						

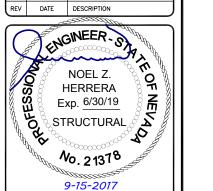
NOTE: ANGLE LENGTHS SHALL BE FIELD VERIFIED.

<u>NOTES</u>

- 1. INSTALL NEW SINGLE ANGLE HORIZONTAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLES TO DOUBLE ANGLES. INSTALL NEW STITCH PLATE. DO NOT REUSE BOLTS. FOR EDGE DISTANCES AND FOR COPING DETAILS (ONLY IF NEEDED), REFER TO THE TABLE AND DETAILS THIS SHEET.
- 2. ALL DOUBLE ANGLES TO HAVE MINIMUM 1 STITCH BOLT WITH 3/8" PLATE PER UNBRACED SPAN. MAXIMUM SPACING BETWEEN STITCH BOLTS SHALL NOT BE GREATER THAN 3'-0". SHIM AT EXISTING LEG GUSSETS AS REQUIRED TO MAINTAIN PROPER DOUBLE ANGLE SPACING.
- 3. ONLY ONE CONNECTION BOLT SHALL BE REMOVED AT A TIME.
- 4. REMOVE EXISTING DIAGONAL MEMBERS AND USE FOR TEMPLATES TO FIELD CUT. INSTALL NEW DOUBLE ANGLE DIAGONAL MEMBERS. INSTALL NEW STITCH PLATE. DO NOT REUSE BOLTS. FOR EDGE DISTANCES AND FOR COPING DETAILS (ONLY IF NEEDED), REFER TO THE TABLE AND DETAILS THIS SHEET.

BOLT SCHEDULE							
MEMBER SIZE	CONNECTION TYPE	BOLT SIZE & GRADE	MIN EDGE DISTANCE	BOLT SPACING	BOLT HOLE	BOLT QUANTITY	
0.17.7.7(0	END	7/8"x2 3/4" LONG A325	1 1/8"	NA	15/16"	24	
2∠3x3x3/8	STITCH		NA			FIELD VERIFY	
2∠3 1/2x3 1/2x1/4	END	7/8"x2 1/2" LONG	1 1/8"	- NA	15/16"	12	
	STITCH	7/8"x2 1/2" LONG A325	NA			FIELD VERIFY	

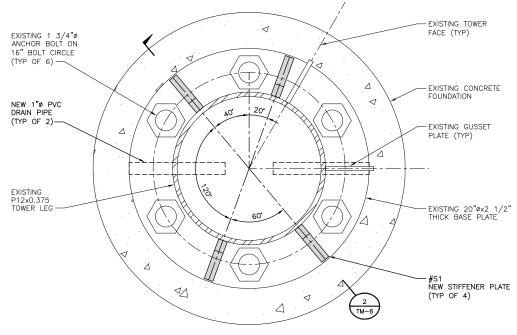



6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO: 196487

DRAWN BY: TYW

CHECKED BY: HK


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

SHEET TITLE

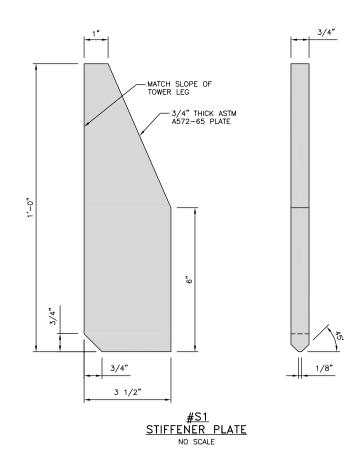
REINFORCEMENT DETAILS


SHEET NUMBER

<u>NOTE</u>

1. TYPICAL FOR ALL 3 TOWER LEGS.

SECTION 1 BASE PLATE STIFFENER PLATE PLAN NO SCALE


NOTE

1. TYPICAL FOR ALL 3 TOWER LEGS.

SECTION 2

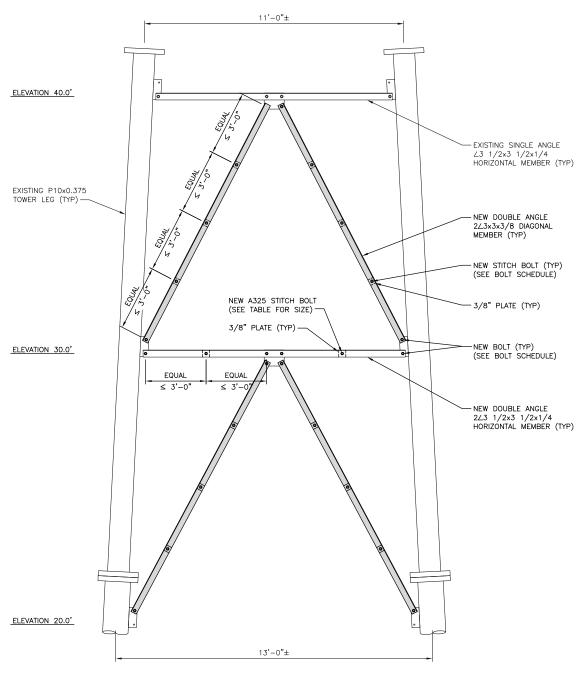
NOTES

- FIELD LOCATE STIFFENER PLATES SPACED ABOUT LEG AS SHOWN AND AS REQUIRED TO AVOID EXISTING INTERFERENCES.
- 2. ALL NEW PLATES SHALL BE HOT-DIPPED GALVANIZED.
- 3. AS A MINIMUM, GROUT SHALL DEVELOP A COMPRESSIVE STRENGTH OF 7000 PSI MINIMUM IN 28 DAYS.
- MATERIAL SHALL BE IN ACCORDANCE WITH ASTM C1107-02, STANDARD SPECIFICATION FOR PACKAGED DRY, HYDRAULIC-CEMENT GROUT (NON-SHRINK).
- 5. RECOMMENDED MANUFACTURES (LISTED IN ORDER OF PREFERENCE):
 - 1) EUCLID CHEMICAL CO. ENCO-NS
 - 2) BASF (DEGUSSA, MASTER BUILDER) MASTERFLOW 95
 - 3) SIKA-SIKAGROUT 212
 - 4) FIVE STAR FIVE STAR GROUT
 - 5) QUIKRETE NON-SHRINK PRECISION GROUT (NO. 1585-00)
 - 6) OR ENGINEER APPROVED EQUAL
- 5. PERFORM ALL REPAIR OR REPLACEMENT ACTIVITIES ONLY IN NON-SEVERE WEATHER CONDITIONS. <u>GROUND WIND SPEED SHALL BE LESS THAN 20 MPH.</u>
- 6. LOOSE MATERIAL SHALL BE REMOVED PRIOR TO GROUT PLACEMENT, ANY FAYING SURFACES MUST BE FREE OF DIRT, GREASE, SCALE, ETC, AND UNSOUND GROUT MUST BE CHIPPED OUT.
- 7. CHECK THE LEVELING NUT FOR TIGHTNESS: USING A SPUD WRENCH AND THE FULL EFFORT OF A PERSON, CHECKING THE LEVELING NUT FOR TIGHTNESS IN ALL LOCATIONS WHERE THE GROUT IS BEING REPAIR. CHECK THE ANCHOR ROD NUT ATOP THE BASE PLATE FOR TIGHTNESS.
- 8. WORK/PLACEMENT SHALL BE PER MANUFACTURER'S RECOMMENDATIONS USING ESTABLISHED PROCEDURES ACCORDING TO AMERICAN CONCRETE INSTITUTE (ACI) 318 RECOMMENDATIONS.
- 9. GROUT SHALL BE PLACED IN A MANNER THAT WILL PREVENT SEGREGATION OF GROUT MATERIALS.
- 10. GROUT SHALL BE INSTALLED TO PROVIDE BEARING TO THE ENTIRE BASE PLATE SURFACE.

6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO:	196487
DRAWN BY:	TYW
CHECKED BY:	НК

ĺ			,			
I						
ı						
I						
	0	09/13/17	ISSUED FOR CONSTRUCTION			
ĺ	REV	DATE	DESCRIPTION			
	CONTRACTOR OF THE PARTY OF THE					


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

SHEET TITLE

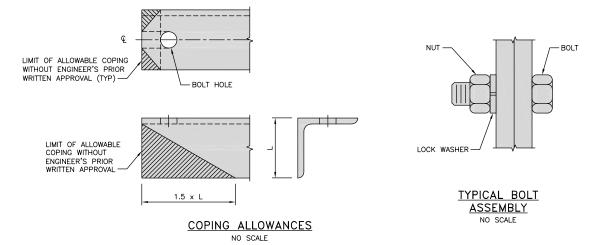
REINFORCEMENT DETAILS

SHEET NUMBER

ELEVATION NO SCALE

BILL OF MATERIALS — DIAGONAL						
ELEVATION QUANTITY OF ANGLE SIZE ANGLE LENGTH						
20.0' - 40.0' 24						

NOTE: ANGLE LENGTHS SHALL BE FIELD VERIFIED.

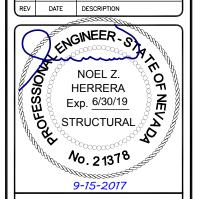

BILL OF MATERIALS — HORIZONTAL						
ELEVATION QUANTITY OF ANGLE SIZE ANGLE LENG						
30.0'	3	∠3 1/2x3 1/2x1/4	12'-0"±			

NOTE: ANGLE LENGTHS SHALL BE FIELD VERIFIED.

<u>NOTES</u>

- 1. INSTALL NEW SINGLE ANGLE HORIZONTAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLES TO DOUBLE ANGLES. INSTALL NEW STITCH PLATE. DO NOT REUSE BOLTS. FOR EDGE DISTANCES AND FOR COPING DETAILS (ONLY IF NEEDED), REFER TO THE TABLE AND DETAILS THIS SHEET.
- 2. ALL DOUBLE ANGLES TO HAVE MINIMUM 1 STITCH BOLT WITH 3/8" PLATE PER UNBRACED SPAN. MAXIMUM SPACING BETWEEN STITCH BOLTS SHALL NOT BE GREATER THAN 3'-0". SHIM AT EXISTING LEG GUSSETS AS REQUIRED TO MAINTAIN PROPER DOUBLE ANGLE SPACING.
- 3. ONLY ONE CONNECTION BOLT SHALL BE REMOVED AT A TIME.
- 4. REMOVE EXISTING DIAGONAL MEMBERS AND USE FOR TEMPLATES TO FIELD CUT. INSTALL NEW DOUBLE ANGLE DIAGONAL MEMBERS. INSTALL NEW STITCH PLATE. DO NOT REUSE BOLTS. FOR EDGE DISTANCES AND FOR COPING DETAILS (ONLY IF NEEDED), REFER TO THE TABLE AND DETAILS THIS SHEET.

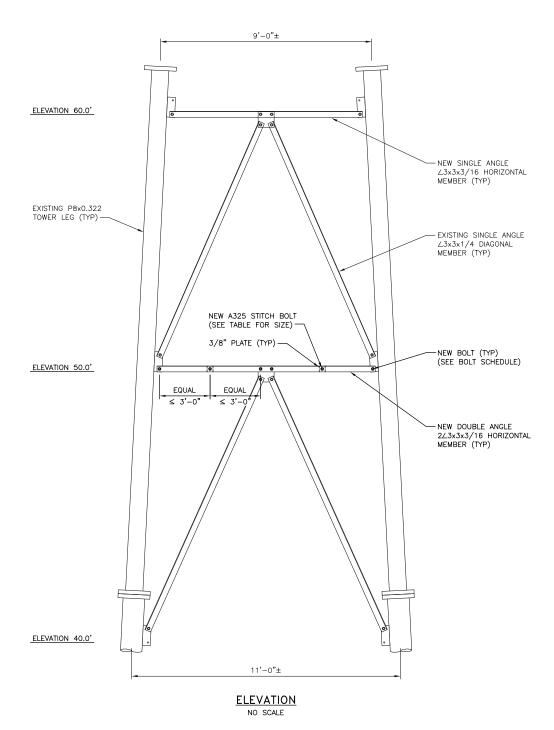
BOLT SCHEDULE							
MEMBER SIZE	CONNECTION TYPE	BOLT SIZE & GRADE	MIN EDGE DISTANCE	BOLT SPACING	BOLT HOLE	BOLT QUANTITY	
2∠3x3x3/8	END	7/8"x2 3/4" LONG A325	1 1/8"	NA NA	15/16"	24	
	STITCH		NA			FIELD VERIFY	
2L3 1/2x3 1/2x1/4	END	7/8"x2 1/2" LONG A325	1 1/8"	- NA	15/16"	6	
	STITCH		NA			FIELD VERIFY	



6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

l	PROJECT NO:	196487
	DRAWN BY:	TYW
١,	CHECKED BY:	нк

_		
\Box		
0	09/13/17	ISSUED FOR CONSTRUCTION
REV	DATE	DESCRIPTION

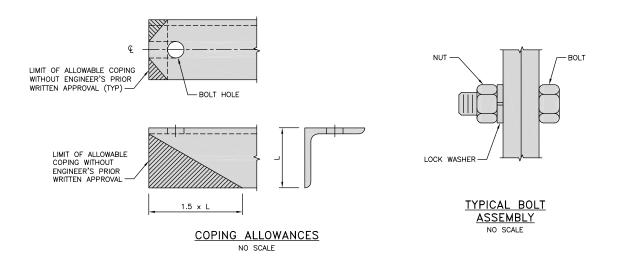

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

SHEET TITLE

REINFORCEMENT DETAILS

SHEET NUMBER

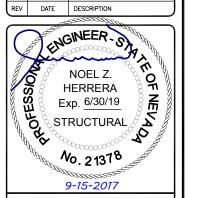


NOTE: ANGLE LENGTHS SHALL BE FIELD VERIFIED.

<u>NOTES</u>

- 1. INSTALL NEW SINGLE ANGLE HORIZONTAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLES TO DOUBLE ANGLES. INSTALL NEW STITCH PLATE. DO NOT REUSE BOLTS. FOR EDGE DISTANCES AND FOR COPING DETAILS (ONLY IF NEEDED), REFER TO THE TABLE AND DETAILS THIS SHEET.
- 2. ALL DOUBLE ANGLES TO HAVE MINIMUM 1 STITCH BOLT WITH 3/8" PLATE PER UNBRACED SPAN. MAXIMUM SPACING BETWEEN STITCH BOLTS SHALL NOT BE GREATER THAN 3'-0". SHIM AT EXISTING LEG GUSSETS AS REQUIRED TO MAINTAIN PROPER DOUBLE ANGLE SPACING.
- 3. ONLY ONE CONNECTION BOLT SHALL BE REMOVED AT A TIME.

BOLT SCHEDULE							
MEMBER SIZE CONNECTION TYPE BOLT SIZE & GRADE MIN EDGE BOLT SPACING BOLT HOLE QUANTITY							
2∠3x3x3/16	END	7/8"x2 1/4" LONG A325	1 1/8"	NA NA	15/16"	6	
223x3x3/16	STITCH	. A325	NA			FIELD VERIFY	



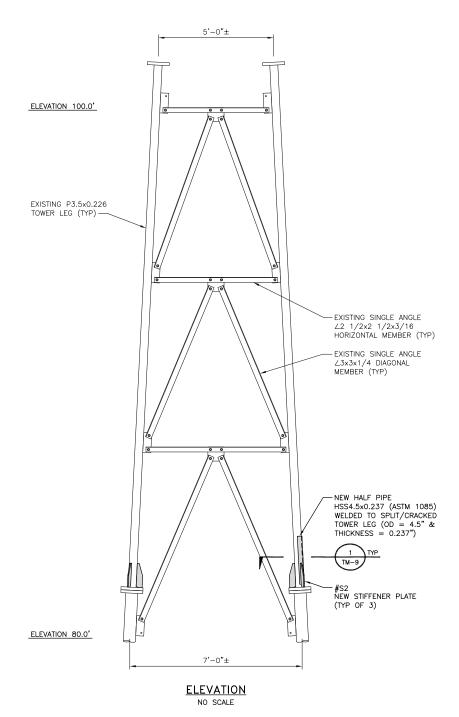
6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

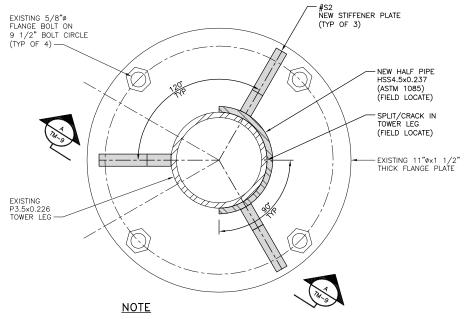
PROJECT NO: 196487
DRAWN BY: TYW
CHECKED BY: HK

\bigcap		
0	09/13/17	ISSUED FOR CONSTRUCTION
REV	DATE	DESCRIPTION

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

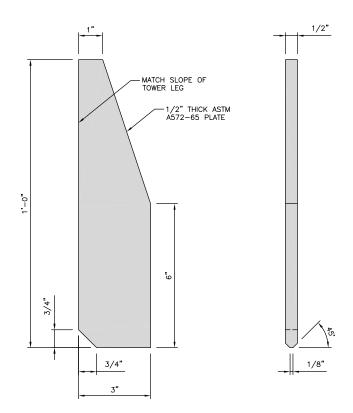
SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

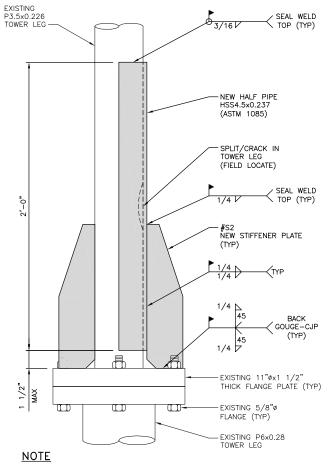

SHEET TITLE


REINFORCEMENT DETAILS

SHEET NUMBER

NOTES


- 1. FIELD LOCATE STIFFENER PLATES SPACED ABOUT LEG AS SHOWN AND AS REQUIRED TO AVOID EXISTING INTERFERENCES.
- 2. ALL NEW PLATES SHALL BE HOT-DIPPED GALVANIZED.



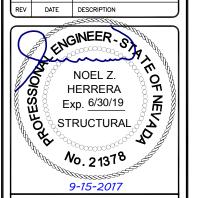
1. TYPICAL FOR SPLT/CRACKED TOWER LEG ONLY.

SECTION 1 FLANGE PLATE STIFFENER PLATE PLAN NO SCALE

#S2 STIFFENER PLATE NO SCALE

1. TYPICAL FOR SPLT/CRACKED TOWER LEG ONLY.

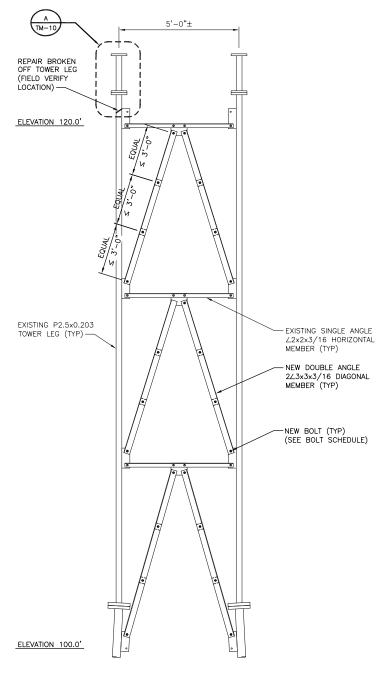
DETAIL A



6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO:	196487
DRAWN BY:	TYW
CHECKED BY:	нк

<u> </u>					
_					
0	09/13/17	ISSUED FOR CONSTRUCTION			
REV	DATE	DESCRIPTION			
SESSESSION OF THE PERSON OF TH					


IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

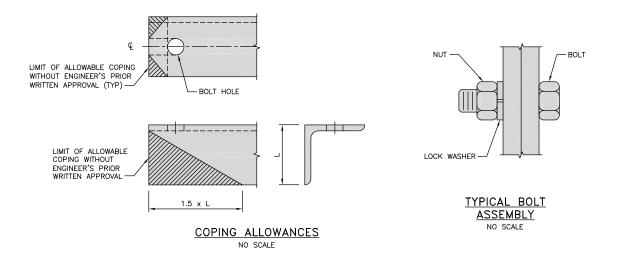
SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

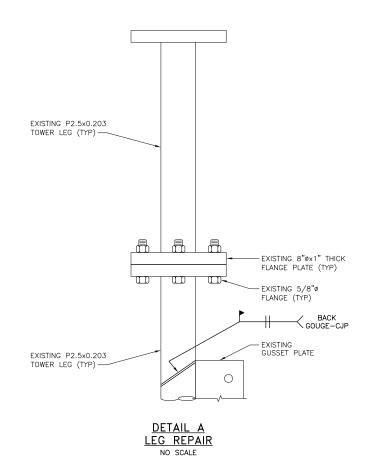
SHEET TITLE

REINFORCEMENT DETAILS

SHEET NUMBER

ELEVATION NO SCALE

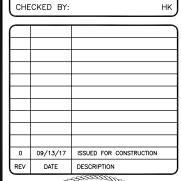

BILL OF MATERIALS - DIAGONAL					
ELEVATION QUANTITY OF ANGLES		ANGLE SIZE	ANGLE LENGTH		
100.0' - 120.0'	18	∠3x3x3/16	7'-2"±		

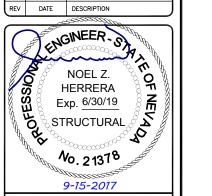

NOTE: ANGLE LENGTHS SHALL BE FIELD VERIFIED.

<u>NOTES</u>

- 1. INSTALL NEW SINGLE ANGLE DIAGONAL MEMBERS TO RECONFIGURE FROM SINGLE ANGLES TO DOUBLE ANGLES. INSTALL NEW STITCH PLATE. DO NOT REUSE BOLTS. FOR EDGE DISTANCES AND FOR COPING DETAILS (ONLY IF NEEDED), REFER TO THE TABLE AND DETAILS THIS SHEET.
- 2. ALL DOUBLE ANGLES TO HAVE MINIMUM 1 STITCH BOLT WITH 3/8" PLATE PER UNBRACED SPAN. MAXIMUM SPACING BETWEEN STITCH BOLTS SHALL NOT BE GREATER THAN 3'-0". SHIM AT EXISTING LEG GUSSETS AS REQUIRED TO MAINTAIN PROPER DOUBLE ANGLE SPACING.
- 3. ONLY ONE CONNECTION BOLT SHALL BE REMOVED AT A TIME.

BOLT SCHEDULE						
MEMBER SIZE	CONNECTION TYPE	BOLT SIZE & GRADE	MIN EDGE DISTANCE	BOLT SPACING	BOLT HOLE	BOLT QUANTITY
2∠3x3x3/16	END	7/8"x2 1/2" LONG A325	1 1/8"	. NA	15/16"	36
	STITCH		NA			FIELD VERIFY





6800 W 115TH ST, SUITE 2292 OVERLAND PARK, KS 66211

PROJECT NO: 196487
DRAWN BY: TYW

IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS THEY ARE ACTING UNDER THE DIRECTION OF A LICENSED PROFESSIONAL ENGINEER, TO ALTER THIS DOCUMENT.

SLIDE MOUNTAIN
ATOP SLIDE MOUNTAIN,
OFF RT 431,
~ 6 MILES WEST OF
NEW WASHOE CITY, NV 89704
WASHOE COUNTY, USA

SHEET TITLE

REINFORCEMENT DETAILS

SHEET NUMBER